首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了提高高校图书馆的图书借阅率,满足学生读者的个性化需求,本文设计了基于协同推荐的高校个性化图书推荐系统。系统使用java开发的B/S体系结构,采用基于用户的相似性的协同过滤推荐算法实现图书推荐。  相似文献   

2.
作为在实际系统中运用最为广泛和成功的推荐技术,协同过滤算法得到了研究者们的广泛关注.传统的协同过滤算法面临着数据稀疏和冷启动等问题的挑战,在计算用户之间相似度时只能考虑有限的数据,因此难以对用户之间的相似度进行准确的估计.提出了一种基于核密度估计的用户兴趣估计模型,并基于此模型,提出了一种基于核方法的user-based协同过滤推荐算法.通过挖掘用户在有限的评分数据上表现出来的潜在兴趣,该算法能更好地描述用户兴趣在项目空间上的分布,进而可以更好地估计用户之间的兴趣相似度.实验表明,该算法可以有效地提高推荐系统的性能,尤其在数据稀疏的情况下能显著地提高推荐结果的质量.  相似文献   

3.
基于用户层次信息的协同推荐算法   总被引:7,自引:0,他引:7  
秦国  杜小勇 《计算机科学》2004,31(10):138-140
在个性化信息推荐服务中,协同推荐作为一种基本的信息过滤方法得到广泛的应用,它根据和目标用户具有相似行为的用户对资源的评价来进行推荐。但是,我们的研究发现,协同推荐算法所获得的相似用户群和实际用户的概念层次没有关系,这和我们的直觉是矛盾的,这驱使我们在协同推荐算法中考虑进用户的分类信息。实验结果表明,这样的方法是有效的,它和传统协同过滤相比具有更高的推荐精度。  相似文献   

4.
雷瑛  吴晶  熊璋 《计算机工程与设计》2007,28(21):5257-5260
协同过滤目前较为成功地应用于个性化推荐系统中.但随着系统规模的扩大和待推荐项目的不断增加,协同过滤面临着稀疏性问题和新项目推荐问题,制约了推荐效果.在此分析了传统协同过滤推荐方法中存在的问题,提出一种基于项目分层的个性化推荐方法.采用了基于多层兴趣表示的用户相似性算法,并结合相似用户推荐项与项目相似性来推荐新项目.该推荐方法在稀疏数据集上能表现出较好的推荐质量,同时也能够有效地解决新项目推荐问题.  相似文献   

5.
6.
基于领域最近邻的协同过滤推荐算法   总被引:16,自引:0,他引:16  
协同过滤是目前电子商务推荐系统中广泛应用的最成功的推荐技术,但面临严峻的用户评分数据稀疏性和推荐实时性挑战. 针对上述问题,提出了基于领域最近邻的协同过滤推荐算法,以用户评分项并集作为用户相似性计算基础,将并集中的非目标用户区分为无推荐能力和有推荐能力两种类型;对于前一类用户不再计算用户相似性以改善推荐实时性,对于后一类用户则提出“领域最近邻”方法对并集中的未评分项进行评分预测,从而降低数据稀疏性和提高最近邻寻找准确性. 实验结果表明,该算法能有效提高推荐质量.  相似文献   

7.
基于领域知识的个性化协同商务推荐系统   总被引:1,自引:0,他引:1       下载免费PDF全文
基于领域知识与顾客购买倾向相关联的事实,从知识表示、知识获取、系统实现三个方面研究了个性化协同商务推荐系统的实现策略。知识表示研究了自然语言的本体表示,主要包括:知识本体描述、模糊关系设计、概念关联抽象和公理修正四个部分;知识获取采用多层次领域知识获取和基于数据挖掘的智能知识获取两种方法,对知识的形式化和结构化进行了研究;基于J2EE技术创建了由客户端、服务器端、存储系统组成的协同商务推荐系统的结构模型。最后通过测试网站对系统的有效性进行了验证。  相似文献   

8.
9.
协同过滤是迄今为止个性化推荐系统中采用最广泛最成功的推荐技术,但现有方法是将用户不同时间的兴趣等同考虑,时效性不足,而且推荐精度也有待进一步提高。鉴于此提出一种改进的协同过滤算法,针对用户近邻计算和项目评分的预测两个关键步骤,提出基于项目相关性的用户相似性计算方法,以便邻居用户更准确,同时在预测评分的过程中增加时间权限,使得接近采集时间的点击兴趣在推荐过程中具有更大权值。实验结果表明,该算法在提高了推荐精度的同时实现了实时推荐。  相似文献   

10.
对基于余弦相似性、相关相似性与项目评分的CF算法进行了性能对比与评价,对其在个性化推荐系统中的应用、面临的问题以及相应的解决方法进行了分析与研究。  相似文献   

11.
推荐系统已经成功地应用于电子商务、数字图书馆等方面。但随着近年来公共服务平台的发展,现存的推荐系统不能有效处理公共服务平台中不同类型企业之间供求关系的推荐问题,不能针对供求关系产业链做出准确、迅速的推荐。因此,根据公共服务平台的供求关系产业链并结合协同过滤技术,提出了一种新的个性化推荐模型,它基于网络平台中的企业分类、供求关系等来建立模型,并通过建立企业类用户群来缩小协同过滤时用户群体的数量,降低计算时属性空间的维度,从而提高推荐的效率。使用该模型进行推荐可以更好地帮助企业建立沟通渠道、获得服务信息,满足企业个性化的要求。  相似文献   

12.
推荐系统已经成功地应用于电子商务、数字图书馆等方面。但随着近年来公共服务平台的发展,现存的推荐系统不能有效处理公共服务平台中不同类型企业之间供求关系的推荐问题,不能针对供求关系产业链做出准确、迅速的推荐。因此,根据公共服务平台的供求关系产业链并结合协同过滤技术,提出了一种新的个性化推荐模型,它基于网络平台中的企业分类、供求关系等来建立模型,并通过建立企业类用户群来缩小协同过滤时用户群体的数量,降低计算时属性空间的维度,从而提高推荐的效率。使用该模型进行推荐可以更好地帮助企业建立沟通渠道、获得服务信息,满足企业个性化的要求。  相似文献   

13.
胡炜 《计算机时代》2009,(11):16-17,20
介绍了协同过滤算法,并对算法进行了改进,解决了用户稀疏的情况下传统算法的不足,同时通过引入评分阈值,显著提高了个性化协同过滤算法的推荐精度。  相似文献   

14.
针对协同过滤推荐算法在数据稀疏性及在大数据规模下系统可扩展性的两个问题, 在分析研究Hadoop分布式平台与协同过滤推荐算法后, 提出了一种基于Hadoop平台实现协同过滤推荐算法的优化方案. 实验证明, 在Hadoop平台上通过MapReduce结合Hbase数据库实现算法, 能够有效地提高协同过滤推荐算法在大数据规模下的执行效率, 从而能够进一步地搭建低成本高性能、动态扩展的分布式推荐引擎.  相似文献   

15.
为了解决传统的基于用户的协同过滤算法中的数据稀疏性问题,提高推荐的准确率,本文对推荐算法进行了改进并将改进后的算法应用在美食推荐领域。首先,利用均值中心化方法对实验数据进行处理,减少因个人评分习惯差异造成的推荐误差。然后,通过使用改进的空值填补法降低评分矩阵的稀疏性。最后,在计算相似度时引入了遗忘函数和用户间的信任度,进一步提高了推荐系统的准确性。实验表明,本文提出的改进算法比传统算法有更高的准确率,并得出了在推荐过程中考虑用户和项目外的其他因素以及针对不同的数据信息采用不同的算法,都有利于提高推荐准确率的重要结论。  相似文献   

16.
Traditionally, collaborative recommender systems have been based on a single-shot model of recommendation where a single set of recommendations is generated based on a user’s (past) stored preferences. However, content-based recommender system research has begun to look towards more conversational models of recommendation, where the user is actively engaged in directing search at recommendation time. Such interactions can range from high-level dialogues with the user, possibly in natural language, to more simple interactions where the user is, for example, asked to indicate a preference for one of k suggested items. Importantly, the feedback attained from these interactions can help to differentiate between the user’s long-term stored preferences, and her current (short-term) requirements, which may be quite different. We argue that such interactions can also be beneficial to collaborative recommendation and provide experimental evidence to support this claim.  相似文献   

17.
推荐系统已成为减轻信息过载时用户负担的关键工具,由于要处理不同形式的用户交互,因此协同推荐要与用户的具体情况和不断变化的兴趣相关。基于此,提出建立上下文相关的协同推荐,以领域本体的形式包含语义知识,把用户配置定义为一个本体。文章描述用户配置本体如何学习、增量更新和如何用于协同推荐。  相似文献   

18.
一种优化的协同过滤推荐算法   总被引:39,自引:0,他引:39  
协同过滤技术被成功地应用于个性化推荐系统中.随着电子商务系统用户数目和商品数目的日益增加,整个项目空间上用户评分数据极端稀疏,传统的相似性度量方法存在一定的不足.在引入项目评分预测思想的基础上,考虑到数据稀疏性带来的影响,采用修正的条件概率方法计算项目相似性,提出一种优化的协同过滤推荐算法,计算结果更具有实际意义和准确性.实验表明,该算法能够有效避免传统方法带来的弊端,提高系统的推荐质量.  相似文献   

19.
提出一种基于信任机制的协同过滤推荐算法,其中,直接信任度基于共同评价项目得出,推荐信任度通过对项目的预测得出。借鉴社会网络中人与人之间的信任评价方法,使用户之间的相似度计算更加准确,从而为目标用户提供更好的推荐结果。实验结果表明,该模型提高了信任度预测的准确性及系统的推荐质量。  相似文献   

20.
基于项目和信任的协同过滤推荐算法   总被引:2,自引:0,他引:2       下载免费PDF全文
为解决冷启动用户的推荐问题,对TrustWalker算法在相似度计算、可能性项目选择和预测评分等方面进行改进,提出一种基于项目和信任的协同过滤推荐算法CoTrustWalker。采用云模型相似度方法计算项目间的相似度,通过选择最相似的若干个项目的聚合结果作为随机游走的返回结果,从而提高推荐结果的稳定性。实验结果表明,CoTrustWalker算法在小规模数据集上与TrustWalker算法相比,其推荐质量和推荐速度均有较大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号