首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spatial receptive fields of primary auditory (AI) neurons were studied by delivering, binaurally, synthesized virtual-space signals via earphones to cats under barbiturate anesthesia. Signals were broadband or narrowband transients presented in quiet anechoic space or in acoustic space filled with uncorrelated continuous broadband noise. In the absence of background noise, AI virtual space receptive fields (VSRFs) are typically large, representing a quadrant or more of acoustic space. Within the receptive field, onset latency and firing strength form functional gradients. We hypothesized earlier that functional gradients in the receptive field provide information about sound-source direction. Previous studies indicated that spatial gradients could remain relatively constant across changes in signal intensity. In the current experiments we tested the hypothesis that directional sensitivity to a transient signal, as reflected in the gradient structure of VSRFs of AI neurons, is also retained in the presence of a continuous background noise. When background noise was introduced three major affects on VSRFs were observed. 1) The size of the VSRF was reduced, accompanied by a reduction of firing strength and lengthening of response latency for signals at an acoustic axis and on-lines of constant azimuth and elevation passing through the acoustic axis. These effects were monotonically related to the intensity of the background noise over a noise intensity range of approximately 30 dB. 2) The noise intensity-dependent changes in VSRFs were mirrored by the changes that occurred when the signal intensity was changed in signal-alone conditions. Thus adding background noise was equivalent to a shift in the threshold of a directional signal, and this shift was seen across the spatial receptive field. 3) The spatial gradients of response strength and latency remained evident over the range of background noise intensity that reduced spike count and lengthened onset latency. Those gradients along the azimuth that spanned the frontal midline tended to remain constant in slope and position in the face of increasing intensity of background noise. These findings are consistent with our hypothesis that, under background noise conditions, information that underlies directional acuity and accuracy is retained within the spatial receptive fields of an ensemble of AI neurons.  相似文献   

2.
This research focused on the response of neurons in the inferior colliculus of the unanesthetized mustached bat, Pteronotus parnelli, to apparent auditory motion. We produced the apparent motion stimulus by broadcasting pure-tone bursts sequentially from an array of loudspeakers along horizontal, vertical, or oblique trajectories in the frontal hemifield. Motion direction had an effect on the response of 65% of the units sampled. In these cells, motion in opposite directions produced shifts in receptive field locations, differences in response magnitude, or a combination of the two effects. Receptive fields typically were shifted opposite the direction of motion (i.e., units showed a greater response to moving sounds entering the receptive field than exiting) and shifts were obtained to horizontal, vertical, and oblique motion orientations. Response latency also shifted as a function of motion direction, and stimulus locations eliciting greater spike counts also exhibited the shortest neural latency. Motion crossing the receptive field boundaries appeared to be both necessary and sufficient to produce receptive field shifts. Decreasing the silent interval between successive stimuli in the apparent motion sequence increased both the probability of obtaining a directional effect and the magnitude of receptive field shifts. We suggest that the observed directional effects might be explained by "spatial masking," where the response of auditory neurons after stimulation from particularly effective locations in space would be diminished. The shift in auditory receptive fields would be expected to shift the perceived location of a moving sound and may explain shifts in localization of moving sources observed in psychophysical studies. Shifts in perceived target location caused by auditory motion might be exploited by auditory predators such as Pteronotus in a predictive tracking strategy to capture moving insect prey.  相似文献   

3.
Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal's location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to influence ADN/PoS neurophysiology. To further understand how the head direction (HD) cell signal is generated, we recorded single neurons from the LMN of freely moving rats. The majority of cells discharged as a function of one of three types of spatial correlates: (1) directional heading, (2) head pitch, or (3) angular head velocity (AHV). LMN HD cells exhibited higher peak firing rates and greater range of directional firing than that of ADN and PoS HD cells. LMN HD cells were modulated by angular head velocity, turning direction, and anticipated the rat's future HD by a greater amount of time (approximately 95 msec) than that previously reported for ADN HD cells (approximately 25 msec). Most head pitch cells discharged when the rostrocaudal axis of the rat's head was orthogonal to the horizontal plane. Head pitch cell firing was independent of the rat's location, directional heading, and its body orientation (i.e., the cell discharged whenever the rat pointed its head up, whether standing on all four limbs or rearing). AHV cells were categorized as fast or slow AHV cells depending on whether their firing rate increased or decreased in proportion to angular head velocity. These data demonstrate that LMN neurons code direction and angular motion of the head in both horizontal and vertical planes and support the hypothesis that the LMN play an important role in processing both egocentric and allocentric spatial information.  相似文献   

4.
Previous research has shown that head direction (HD) cells in both the anterior dorsal thalamus (ADN) and the postsubiculum (PoS) in rats discharge in relation to familiar, visual landmarks in the environment. This study assessed whether PoS and ADN HD cells would be similarly responsive to nonvisual or unfamiliar environmental cues. After visual input was eliminated by blindfolding the rats, HD cells maintained direction-specific discharge, but their preferred firing directions became less stable. In addition, rotations of the behavioral apparatus indicated that some nonvisual cues (presumably tactile, olfactory, or both) exerted above chance stimulus control over a cell's preferred firing direction. However, a prominent auditory cue was not effective in exerting stimulus control over a cell's preferred direction. HD cell activity also was assessed after rotation of a novel visual cue exposed to the rat for 1, 3, or 8 min. An 8-min exposure was enough time for a novel visual cue to gain control over a cell's preferred direction, whereas an exposure of 1 or 3 min led to control in only about half the sessions. These latter results indicate that HD cells rely on a rapid learning mechanism to develop associations with landmark cues.  相似文献   

5.
We have investigated the notion that directional responses of cells in the visual cortex depend on the type of stimulus used to drive the cell. Specifically, we have asked if sinusoidal gratings provide a different estimate of direction selectivity than bars that are brighter or darker than the background. Using standard techniques, we recorded from 176 cells in the visual cortex of nine cats. For each cell, bright bars, dark bars, and sinusoidal gratings were presented in a randomly interleaved fashion. Complex cells exhibited around twice as many direction-selective as nondirection-selective responses. Estimates of direction selectivity were nearly identical for bright and dark bars and for gratings. For simple cells, a similar ratio of direction-selective to nondirection-selective responses was observed for gratings. However, a larger proportion of simple cells were classified as direction selective when bars were used for stimulation. A simple cell that exhibited direction selectivity to a grating behaved in a similar manner when stimulated with bright or dark bars. However, in contrast to complex cells, some simple cells classed as directionally nonselective on the basis of their responses to gratings, displayed directionally selective behavior to bars. In addition, the preferred directions for dark and bright bars sometimes differed. These results demonstrate that the classification of a simple cell as directionally selective or nonselective can depend critically on the visual stimulus used.  相似文献   

6.
The ventrolateral periaqueductal gray is implicated as a component of the neuronal network for audiogenic seizure. This implication is based on immunocytochemical labeling of the proto-oncogene, c-fos, and microinjection studies in the severe substrain of genetically epilepsy-prone rats that exhibits tonic seizures. The present study examines changes in acoustically evoked neuronal responses within the periaqueductal gray in the awake and behaving genetically epilepsy-prone rat as compared to normal Sprague Dawley rats. Two populations of neuronal response were observed in the periaqueductal gray of both genetically epilepsy-prone and normal rats. Most of the neurons exhibited long latencies (>10 ms) and lower thresholds, and were more responsive to the acoustic stimulus. The remainder of the periaqueductal gray neurons exhibited short latencies (<10 ms) and higher thresholds, and exhibited minimal responsiveness to the acoustic stimulus. The mean threshold of periaqueductal gray acoustically evoked neuronal firing of short-latency neurons was significantly higher than normal in the genetically epilepsy-prone rat. The number of acoustically evoked action potentials was significantly elevated in the genetically epilepsy-prone rat, particularly at the highest acoustic intensity and at a repetition rate of 1/2 s. In the genetically epilepsy-prone rat, the number of action potentials exhibited adaptation (habituation) at 1/s as compared to 1/2 s across stimulus intensities. Habituation in normal rats was observed primarily at high intensities (95 dB sound pressure level or above). During wild running and tonic seizures in the genetically epilepsy-prone rat, periaqueductal gray neurons. which had diminished firing rates due to habituation, exhibited a tonic firing pattern. Just (1-5 s) prior to the onset of tonic convulsive behaviors, an increase in the rate of periaqueductal gray tonic firing was observed. These patterns of abnormal neuronal firing suggest that periaqueductal gray neurons may be involved in generation of the tonic seizure behavioral component of audiogenic seizure in the genetically epilepsy-prone rat, which will need confirmation in other audiogenic seizure models.  相似文献   

7.
Previous research has shown that head direction (HD) cells in both the anterior dorsal thalamus (ADN) and the postsubiculum (PoS) in rats discharge in relation to familiar, visual landmarks in the environment. This study assessed whether PoS and ADN HD cells would be similarly responsive to nonvisual or unfamiliar environmental cues. After visual input was eliminated by blindfolding the rats, HD cells maintained direction-specific discharge, but their preferred firing directions became less stable. In addition, rotations of the behavioral apparatus indicated that some nonvisual cues (presumably tactile, olfactory, or both) exerted above chance stimulus control over a cell's preferred firing direction. However, a prominent auditory cue was not effective in exerting stimulus control over a cell's preferred direction. HD cell activity also was assessed after rotation of a novel visual cue exposed to the rat for 1, 3, or 8 min. An 8-min exposure was enough time for a novel visual cue to gain control over a cell's preferred direction, whereas an exposure of 1 or 3 min led to control in only about half the sessions. These latter results indicate that HD cells rely on a rapid learning mechanism to develop associations with landmark cues. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
The floccular lobe of the monkey is critical for the generation of visually-guided smooth eye movements. The present experiments reveal physiological correlates of the directional organization in the primate floccular lobe by examining the selectivity for direction of eye motion and visual stimulation in the firing of individual Purkinje cells (PCs) and mossy fibers. During tracking of sinusoidal target motion along different axes in the frontoparallel plane, PCs fell into two classes based on the axis that caused the largest modulation of simple-spike firing rate. For "horizontal" PCs, the response was maximal during horizontal eye movements, with increases in firing rate during pursuit toward the side of recording (ipsiversive). For "vertical" PCs, the response was maximal during eye movement along an axis just off pure vertical, with increases in firing rate during pursuit directed downward and slightly contraversive. During pursuit of target motion at constant velocity, PCs again fell into horizontal and vertical classes that matched the results from sinusoidal tracking. In addition, the directional tuning of the sustained "eye velocity" and transient "visual" components of the neural responses obtained during constant velocity tracking were very similar. PCs displayed very broad tuning approximating a cosine tuning curve; the mean half-maximum bandwidth of their tuning curves was 170-180 degrees. Other cerebellar elements, related purely to eye movement and presumed to be mossy fibers, exhibited tuning approximately 40 degrees narrower than PCs and had best directions that clustered around the four cardinal directions. Our data indicate that the motion signals encoded by PCs in the monkey floccular lobe are segregated into channels that are consistent with a coordinate system defined by the vestibular apparatus and eye muscles. The differences between the tuning properties exhibited by PCs compared with mossy fibers indicate that a spatial transformation occurs within the floccular lobe.  相似文献   

9.
Activity from ventral subicular and hippocampal CA1 neurons was recorded in rats exploring a 4-arm radial maze in which the local and distal cues could be manipulated. Cells from both regions exhibited place fields, although ventral subicular neurons had larger fields than hippocampal cells. Rotation of the local and distal cues in opposite directions produced movement of the place fields in either direction or a complete change in firing pattern. Simplifying the environment also produced changes in place field location. Despite similarities between regions, subiculum fields decreased in size whereas hippocampal fields increased in the simple environment. These findings suggest that subicular cells may receive converging input from several hippocampal neurons and code more complex configurations of the cues. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
Many theories of cerebellar motor learning propose that complex spikes (CS) provide essential error signals for learning and modulate parallel fiber inputs that generate simple spikes (SS). These theories, however, do not satisfactorily specify what modality is represented by CS or how information is conveyed by the ultra-low CS firing rate (1 Hz). To further examine the function of CS and the relationship between CS and SS in the cerebellum, CS and SS were recorded in the ventral paraflocculus (VPFL) of awake monkeys during ocular following responses (OFR). In addition, a new statistical method using a generalized linear model of firing probability based on a binomial distribution of the spike count was developed for analysis of the ultra-low CS firing rate. The results of the present study showed that the spatial coordinates of CS were aligned with those of SS and the speed-tuning properties of CS and SS were more linear for eye movement than retinal slip velocity, indicating that CS contain a motor component in addition to the sensory component identified in previous studies. The generalized linear model to reproduce firing probability confirmed these results, demonstrating that CS conveyed high-frequency information with its ultra-low firing frequency and conveyed both sensory and motor information. Although the temporal patterns of the CS were similar to those of the SS when the sign was reversed and magnitude was amplified approximately 50 times, the velocity/acceleration coefficient ratio of the eye movement model, an aspect of the CS temporal firing profile, was less than that of the SS, suggesting that CS were more sensory in nature than SS. A cross-correlation analysis of SS that are triggered by CS revealed that short-term modulation, that is, the brief pause in SS caused by CS, does not account for the reciprocal modulation of SS and CS. The results also showed that three major aspects of the CS and SS individual cell firing characteristics were negatively correlated on a cell-to-cell basis: the preferred direction of stimulus motion, the mean percent change in firing rate induced by upward stimulus motion, and patterns of temporal firing probability. These results suggest that CS may contribute to long-term interactions between parallel and climbing fiber inputs, such as long-term depression and/or potentiation.  相似文献   

11.
Head direction (HD) cells discharge as a function of the rat's directional orientation with respect to its environment. Because animals with posterior parietal cortex (PPC) lesions exhibit spatial and navigational deficits, and the PPC is indirectly connected to areas containing HD cells, we determined the effects of bilateral PPC lesions on HD cells recorded in the anterodorsal thalamus. HD cells from lesioned animals had similar firing properties compared to controls and their preferred firing directions shifted a corresponding amount following rotation of the major visual landmark. Because animals were not exposed to the visual landmark until after surgical recovery, these results provide evidence that the PPC is not necessary for visual landmark control or the establishment of landmark stability. Further, cells from lesioned animals maintained a stable preferred firing direction when they foraged in the dark and were only slightly less stable than controls when they self-locomoted into a novel enclosure. These findings suggest that PPC does not play a major role in the use of landmark and self-movement cues in updating the HD cell signal, or in its generation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
We recorded the activity of single neurons in the middle temporal (MT) and middle superior temporal (MST) visual areas in two macaque monkeys while the animals performed a smooth pursuit target selection task. The monkeys were presented with two moving stimuli of different colors and were trained to initiate smooth pursuit to the stimulus that matched the color of a previously given cue. We designed these experiments so that we could separate the component of the neuronal response that was driven by the visual stimulus from an extraretinal component that predicted the color or direction of the selected target. We found that for all cells in MT and MST the response was primarily determined by the visual stimulus. However, 14% (8 of 58) of MT neurons and 26% (22 of 84) of MST neurons had a small predictive component that was significant at the P < or = 0.05 level. In some cells, the predictive component was clearly related to the color of the intended target, but more often it was correlated with the direction of the target. We have previously documented a systematic shift in the latency of smooth pursuit that depends on the relative direction of motion of the two stimuli. We found that neither the latency nor the amplitude of neuronal responses in MT or MST was correlated with behavioral latency. These results are consistent with a model for target selection in which a weak selection bias for the intended target is amplified by a competitive network that suppresses motion signals related to the nonintended stimulus. It is possible that the predictive component of neuronal responses in MT and MST contributes to the selection bias. However, the strength of the selection bias in MT and MST is not sufficient to account for the high degree of selectivity shown by pursuit behavior.  相似文献   

13.
Previous research has identified neurons in the postsubiculum (PoS) and anterior dorsal thalamic nucleus (AD) of the rat that discharge as a function of the animal's head direction. In addition, anatomical studies have shown that the AD and PoS are reciprocally connected with one another. The current study examined whether head direction (HD) cells in each of the two areas is dependent on input from the other structure. After both electrolytic or neurotoxic lesions of the AD, no cells were identified with direction-specific discharge in the PoS. In contrast, AD HD cell activity was still present after neurotoxic lesions to the PoS. However, AD HD cells in PoS-lesioned rats exhibited three important differences compared with AD HD cells in intact animals: (1) their directional firing range was significantly larger, (2) their firing predicted the animal's future head direction by a larger amount, and (3) their preferred firing direction was substantially less influenced by a prominent visual landmark within the recording environment. These results indicate that information critical for HD cell activity is conveyed in both directions between the AD and the PoS; whereas the AD is necessary for the presence of HD cell activity in the PoS, the PoS appears important in allowing visual landmarks to exert control over the preferred firing direction of AD HD cells. These findings have implications for several computational models that propose to account for the generation of the HD cell signal.  相似文献   

14.
In 2 experiments the authors tested whether the head direction (HD) cell system underlies a sense of direction maintained across environments. In Experiment 1, HD neurons failed to maintain their firing directions across T mazes in adjacent environments but rather reoriented to the T maze within each environment. Such reorientation suggests that familiar landmarks override an internal directional sense, so in Experiment 2 the authors recorded HD neurons as rats walked between novel and familiar "rooms" of a 4-chamber apparatus. In novel rooms, HD neurons maintained the firing direction of the preceding environment. However, in familiar rooms, HD neuron firing directions shifted to agree with the landmarks therein. With repeated experience, a homogeneous representation of all rooms developed in a subset of the rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
It is not known whether psychophysical performance depends primarily on small numbers of neurons optimally tuned to specific visual stimuli, or on larger populations of neurons that vary widely in their properties. Tuning bandwidths of single cells can provide important insight into this issue, yet most bandwidth measurements have been made using suprathreshold visual stimuli, whereas psychophysical measurements are frequently obtained near threshold. We therefore examined the directional tuning of cells in the middle temporal area (MT, or V5) using perithreshold, stochastic motion stimuli that we have employed extensively in combined psychophysical and physiological studies. The strength of the motion signal (coherence) in these displays can be varied independently of its direction. For each MT neuron, we characterized the directional bandwidth by fitting Gaussian functions to directional tuning data obtained at each of several motion coherences. Directional bandwidth increased modestly as the coherence of the stimulus was reduced. We then assessed the ability of MT neurons to discriminate opposed directions of motion along six equally spaced axes of motion spanning 180 degrees. A signal detection analysis yielded neurometric functions for each axis of motion, from which neural thresholds could be extracted. Neural thresholds remained surprisingly low as the axis of motion diverged from the neuron's preferred-null axis, forming a plateau of high to medium sensitivity that extended approximately 45 degrees on either side of the preferred-null axis. We conclude that directional tuning remains broad in MT when motion signals are reduced to near-threshold values. Thus directional information is widely distributed in MT, even near the limits of psychophysical performance. These observations support models in which relatively large numbers of signals are pooled to inform psychophysical decisions.  相似文献   

16.
1. The middle temporal area (MT) projects to the intraparietal sulcus in the macaque monkey. We describe here a discrete area in the depths of the intraparietal sulcus containing neurons with response properties similar to those reported for area MT. We call this area the physiologically defined ventral intraparietal area, or VIP. In the present study we recorded from single neurons in VIP of alert monkeys and studied their visual and oculomotor response properties. 2. Area VIP has a high degree of selectivity for the direction of a moving stimulus. In our sample 72/88 (80%) neurons responded at least twice as well to a stimulus moving in the preferred direction compared with a stimulus moving in the null direction. The average response to stimuli moving in the preferred direction was 9.5 times as strong as the response to stimuli moving in the opposite direction, as compared with 10.9 times as strong for neurons in area MT. 3. Many neurons were also selective for speed of stimulus motion. Quantitative data from 25 neurons indicated that the distribution of preferred speeds ranged from 10 to 320 degrees/s. The degree of speed tuning was on average twice as broad as that reported for area MT. 4. Some neurons (22/41) were selective for the distance at which a stimulus was presented, preferring a stimulus of equivalent visual angle and luminance presented near (within 20 cm) or very near (within 5 cm) the face. These neurons maintained their preference for near stimuli when tested monocularly, suggesting that visual cues other than disparity can support this response. These neurons typically could not be driven by small spots presented on the tangent screen (at 57 cm). 5. Some VIP neurons responded best to a stimulus moving toward the animal. The absolute direction of visual motion was not as important for these cells as the trajectory of the stimulus: the best stimulus was one moving toward a particular point on the face from any direction. 6. VIP neurons were not active in relation to saccadic eye movements. Some neurons (10/17) were active during smooth pursuit of a small target. 7. The predominance of direction and speed selectivity in area VIP suggests that it, like other visual areas in the dorsal stream, may be involved in the analysis of visual motion.  相似文献   

17.
Vestibular information influences spatial orientation and navigation in laboratory animals and humans. Neurons within the rat anterior thalamus encode the directional heading of the animal in absolute space. These neurons, referred to as head direction (HD) cells, fire selectively when the rat points its head in a specific direction in the horizontal plane with respect to the external laboratory reference frame. HD cells are thought to represent an essential component of a neural network that processes allocentric spatial information. The functional properties of HD cells may be dependent on vestibular input. Here, anterior thalamic HD cells were recorded before and after sodium arsanilate-induced vestibular system lesion. Vestibular lesions abolished the directional firing properties of HD cells. The time course of disruption in the directional firing properties paralleled the loss of vestibular function. Arsanilate-treated rats exhibited only minor changes in locomotor behavior, which were unlikely to account for the loss of direction-specific firing. Vestibular lesions also disrupted the influence of angular head velocity on anterior thalamic single-unit firing rates. Finally, a subset of anterior thalamic neurons recorded from vestibular-lesioned rats exhibited a pattern of intermittent firing bursts that were distinctly unrelated to HD. This novel anterior thalamic firing pattern has not been encountered in any vestibular-intact rat. These data suggest that: (1) the neural code for directional bearing is critically dependent on vestibular information; and (2) this loss of HD cell information may represent a neurobiological mechanism to account for the orientation and navigational deficits observed after vestibular dysfunction.  相似文献   

18.
Acoustical stimulation causes displacement of the sensory hair cells relative to the otoliths of the fish inner ear. The swimbladder, transforming the acoustical pressure component into displacement, also contributes to the displacement of the hair cells. Together, this (generally) yields elliptical displacement orbits. Alternative mechanisms of fish directional hearing are proposed by the phase model, which requires a temporal neuronal code, and by the orbit model, which requires a spike density code. We investigated whether the directional selective response of auditory neurons in the midbrain torus semicircularis (TS; homologous to the inferior colliculus) is based on spike density and/or temporal encoding. Rainbow trout were mounted on top of a vibrating table that was driven in the horizontal plane to simulate sound source direction. Rectilinear and elliptical (or circular) motion was applied at 172 Hz. Generally, responses to rectilinear and elliptical/circular stimuli (irrespective of direction of revolution) were the same. The response of auditory neurons was either directionally selective (DS units, n = 85) or not (non-DS units, n = 106). The average spontaneous discharge rate of DS units was less than that of non-DS units. Most DS units (70%) had spontaneous activities < 1 spike per second. Response latencies (mode at 18 ms) were similar for both types of units. The response of DS units is transient (19%), sustained (34%), or mixed (47%). The response of 75% of the DS units synchronized to stimulus frequency, whereas just 23% of the non-DS responses did. Synchronized responses were measured at stimulus amplitudes as low as 0.5 nm (at 172 Hz), which is much lower than for auditory neurons in the medulla of the trout, suggesting strong convergence of VIIIth nerve input. The instant of firing of 42% of the units was independent of stimulus direction (shift <15 degrees), but for the other units, a direction dependent phase shift was observed. In the medial TS spatial tuning of DS units is in the rostrocaudal direction, whereas in the lateral TS all preferred directions are present. On average, medial DS units have a broader directional selectivity range, are less often synchronized, and show a smaller shift of the instant of firing as a function of stimulus direction than lateral DS units. DS response characteristics are discussed in relation to different hypotheses. We conclude that the results are more in favor of the phase model.  相似文献   

19.
In this study intracellular recording techniques were used to study the synaptic events related to phase-locking of cochlear nucleus cells to low frequency stimuli. A variable degree of phase-locking was noted even with units of the same low characteristic frequency. With low frequency phase-locking units an excitatory postsynaptic potential (EPSP) occurred in response to each period of the frequency stimulus, but the probability of an action potential occurring decreased as the frequency of the stimulus was raised. Complex units were described which phase-locked at lower frequencies of stimulation but did not at higher frequencies where the temporal pattern of firing to tone burst stimulation changed as well. Results are discussed as they relate to the frequency following response recorded with gross electrodes in the lower auditory pathway and the relationship to frequency coding in the auditory pathway.  相似文献   

20.
The hippocampal formation has been extensively studied for its special role in visual spatial learning and navigation. To ascertain the nature of the associations made, or computations performed, by hippocampus, it is important to delineate the functional contributions of its afferents. Therefore, single units were recorded in the lateral dorsal nucleus of the thalamus (LDN) as rats performed multiple trials on a radial maze. Many LDN neurons selectively discharged when an animal's head was aligned along particular directions in space, irrespective of its location in the test room. These direction-sensitive cells were localized to the dorsal aspect of the caudal two-thirds of the LDN, the site of innervation by retinal recipient pretectal and intermediate/deep-layer superior colliculus cells (Thompson and Robertson, 1987b). The directional specificity and preference of LDN cells were disrupted if rats were placed on the maze in darkness. If the room light was then turned on, the original preference was restored. If the light was again turned off, directional firing was maintained briefly. Normal directional firing lasted about 2-3 min. After this time, the directional preference (but not specificity) appeared to "rotate" systematically in either the clockwise or counterclockwise direction. The duration of normal directional discharge patterns in darkness could be extended to 30 min by varying the behavior of the animal. LDN cells required visual input to initialize reliable directional firing. After the rat viewed the environment, directional specificity was maintained in the absence of visual cues. Maximal directional firing was achieved only when the rat viewed the entire test room, and not just the scene associated with the directional preference of the cell. Thus, contextual information seems important. Also, a significant correlation was found between directional specificity and errors made on the maze during acquisition of the task. It was concluded that the LDN may pass on to the hippocampal formation directional information that is not merely a reflection of current sensory input. As such, the LDN may serve an important integrative function for limbic spatial learning systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号