首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的探究微弧氧化电解液中纳米α-Al2O3的浓度对铝合金微弧氧化膜层组织和性能的影响。方法在硅酸盐体系电解液中加入1~5 g/L纳米α-Al2O3,微弧氧化获得不同的陶瓷膜层,对膜层的微观结构、厚度、硬度和耐腐蚀性能进行分析。结果膜层的主要组成相为α-Al2O3、γ-Al2O3和SiO2。当纳米α-Al2O3添加量为3 g/L时,膜层表面微裂纹少,孔隙率小,厚度达70μm,硬度为513HV,耐腐蚀性能好。结论硅酸盐电解液中加入纳米α-Al2O3,能够改善铝合金微弧氧化膜层的综合性能。  相似文献   

2.
在硅酸盐、铝酸盐、磷酸盐体系中分别对铸造铝合金进行微弧氧化正交试验,得到溶液的最佳配比,找出三体系下的最优试样,比较试样的膜厚、表面硬度、表面形貌及相组成。结果表明:膜层厚度为硅酸盐体系下的最大,铝酸盐和磷酸盐体系的差别不大,显微硬度磷酸盐体系下最大其他两体系相差不大;三体系微弧氧化膜表面光滑其中磷酸盐最好,铝酸盐次之,硅酸盐相对差点;膜层的相组成主要为α-Al2O3。  相似文献   

3.
采用恒流控制模式在Na2SiO3电解液体系下制得6061铝合金微弧氧化膜,研究了电流密度对微弧氧化陶瓷膜结构和性能的影响。为了提高膜层性能采用了一种新的电流模式,并与恒流条件下的陶瓷层显微结构和耐腐蚀性进行了比较。结果表明,随着电流密度的不断增大,陶瓷膜的厚度、表面粗糙度也随之增大,耐腐蚀性能逐渐降低,硬度则呈现先增大后减小的趋势,膜层主要由α-Al2O3和γ-Al2O3组成,采用新的电流模式得到的陶瓷膜显微裂纹明显减少,耐腐蚀性明显提高。  相似文献   

4.
使用扫描电镜、X射线衍射仪分析了LY12变形铝合金和YL112压铸铝合金微弧氧化陶瓷膜的形貌和相组成,并探讨了基材中Si、Cu元素含量以及电解液种类和成分对压铸铝合金微弧氧化陶瓷层的影响.结果表明:本实验条件下获得陶瓷层的主要相都是γ-Al2O3.高Si压铸铝合金在磷酸盐体系溶液中形成SiO2相,在硅酸盐体系溶液中形成3Al2O3·2SiO2相,还有少量的Cu2O相,受Si、Cu元素影响,磷酸盐体系溶液中陶瓷膜颗粒粗大,孔洞的孔径也较大,组织疏松.  相似文献   

5.
Na2ZrF6-KoH中微弧氧化2024铝合金陶瓷膜   总被引:1,自引:0,他引:1  
为了提高2024铝合金的表面硬度和耐磨损性能,采用微弧氧化法在Na2zrF6-KOH溶液中使2024铝合金表面形成氧化物陶瓷膜.分别用扫描电镜、电子探针及X射线衍射研究了陶瓷膜的组织形貌、元素分布和相组成.结果表明随氧化时间的增加,阴阳极电压逐渐增加,且阴极电压低于阳极电压;厚约20μm的膜可分为致密层与琉松层;相对致密均匀的膜层主要由α-Al2O3,γ-Al2O3和少量的非晶相物质组成电解液所含元素zr,进入到膜层中,表明电解液组元剧烈参与微弧氧化反应;陶瓷膜的平均硬度约为16 GPa,分布在距界面10μm附近.  相似文献   

6.
高Si压铸Al合金ADC12的微弧氧化表面改性   总被引:5,自引:0,他引:5  
张永君  李文芳  王福会 《金属学报》2005,41(12):1289-1292
利用恒流微弧氧化技术,在以Na2SiO3和Na3PO4为主盐的电解液中,在高硅压铸Al合金ADC12表面制备了陶瓷膜.显微硬度及耐蚀性能测试表明,陶瓷膜显微硬度(HV)高达1430,能对基体金属提供有效的防护.涡流测厚及SEM研究显示,该陶瓷膜厚度分布比较均匀,具有双层结构.EDX和XRD分析表明,该微弧氧化陶瓷膜的主要元素组成为0,Al,Si和P;主要相组成为γ-Al2O3和α-Al2O3,同时含有少量χ-Al2O3,θ-Al2O3和Al2SiO5晶体.  相似文献   

7.
目的 提高6061铝合金微弧氧化膜层的性能.方法 在电解液中加入5 mL/L的植酸,对6061铝合金表面生成的微弧氧化膜层进行改性.记录微弧氧化过程中的电压-时间曲线,采用SEM、EDS、XRD、电化学工作站、马弗炉等仪器设备,研究了植酸的添加对微弧氧化膜层微观结构、元素组成、相组成、耐蚀性、抗热震性等特性的影响.结果 添加植酸后,微弧氧化电压从526 V提高到538 V,微弧氧化放电更加均匀,微弧氧化膜层的生长速率增加,膜层厚度从9.3μm增加到13.6μm.放电微孔孔径减小,数量增多,膜层致密均匀,膜层结合力从3.2 N提高到3.9 N,显微硬度增加了39.2HV.植酸中的磷酸根基团和羟基可与基体电离出的Al3+结合生成植酸铝,使膜层中的C、P元素比例提高,Al元素比例降低.微弧氧化过程中,基体中的Al转变成γ-Al2O3和α-Al2O3,添加植酸后,γ-Al2O3和α-Al2O3的衍射峰强度提高.膜层的腐蚀速率从1.085×10-2 mm/a降低到1.565×10-3 mm/a,其耐蚀性能提高,同时具有良好的抗热震性能.结论 植酸的添加优化了微弧氧化膜层的结构,提高了膜层的厚度、显微硬度和膜层结合力,同时改善了膜层的耐蚀性能和抗热震性能.  相似文献   

8.
铝合金表面微弧氧化陶瓷层耐磨性   总被引:1,自引:1,他引:0  
利用微弧氧化技术在7075铝合金表面形成微弧氧化陶瓷膜层,通过SEM、XRD手段分析了微弧氧化陶瓷层的显微结构、表面形貌和相组成,并在HIT-Ⅱ摩擦磨损试验机上测试了陶瓷膜层的摩擦学性能.结果表明:7075铝合金表面的微弧氧化陶瓷膜层由疏松层、致密层构成,其相组成主要是α-Al2O3和γ-Al2O3两相;氧化陶瓷层与基体结合良好,厚度为25~45μm,表面硬度可达到1900HV0.1左右;微弧氧化表面处理技术可以显著提高铝合金的表面耐磨性,在与GCr15钢球对磨时,膜层具有较低的磨损率,但摩擦因数相对较高.  相似文献   

9.
采用交流双脉冲电流制度对2A97 Al-Cu-Li合金分别在铝酸盐和磷酸盐电解液中进行等离子电解氧化处理的研究,分析所得膜层的微观结构和相组成,并采用电化学极化曲线和摩擦试验对两种电解液中所得膜层的耐腐蚀性能和耐磨性能进行评价。结果表明:在两种电解液中所得膜层表面存在大量饼状结构,膜层由内外两层构成,两层之间分布大量微孔,膜层的相组成主要为α、γ、δ-Al2O3,铝酸盐电解液中所得膜层有较多的α-Al2O3。磷酸盐电解液中所得膜层的耐腐蚀性高于相应的铝酸盐中所得膜层的耐腐蚀性。磷酸盐电解液中所得膜层具有较低的摩擦因数,与膜层中含有的P元素有关。然而,铝酸盐电解液中所得膜层具有更高的耐磨性,是因为铝酸盐膜层中含有更多硬度较高的α-Al2O3。  相似文献   

10.
分别在3种不同电解液体系(硅酸盐体系、铝酸盐体系、磷酸盐体系)对石墨烯镁基复合材料表面进行微弧氧化,并对微弧氧化后膜层的微观组织形貌和物相组成进行分析,通过电化学和浸泡实验对其耐蚀性进行测试。结果表明:硅酸盐体系微弧氧化膜层表面光滑平整,微孔分布均匀;铝酸盐微弧氧化膜层较薄,孔隙尺寸最小;磷酸盐体系膜层微孔分布不均匀,表面存在较多裂纹;硅酸盐体系微弧氧化膜层物相组成主要为SiO_2和MgO,磷酸盐和铝酸盐体系膜层物相组成主要为MgO。3种电解液体系微弧氧化膜层耐蚀性能较基体复合材料提高一个数量级左右,其中硅酸盐体系微弧氧化膜层耐蚀性最好。  相似文献   

11.
2A06铝合金表面微弧氧化陶瓷层摩擦学特性   总被引:3,自引:0,他引:3  
采用微弧氧化技术,以硅酸盐为主要电解液,在2A06铝合金表面制备出高硬度、高耐磨性的微弧氧化陶瓷膜。用扫描电镜观测膜层的显微结构,用X射线衍射分析其相组成,并对膜层进行耐磨损和抗冲蚀试验。结果表明,氧化时间越长,2A06铝合金表面陶瓷层越厚,陶瓷层粗糙度也越高。陶瓷层由过渡层、致密层和疏松层组成。过渡层与基体和致密层结合紧密。致密层的相组成主要为α-Al2O3、γ-Al2O3,疏松层的相组成主要为α-Al2O3、γ-Al2O3以及Al6Si2O3。致密层中的α-Al2O3相的含量远高于疏松层。从试样边缘到试样中心硬度逐渐降低,最高硬度出现在试样表面边缘向内5~20 mm处,平均HV硬度可达20.96 GPa。2A06铝合金的耐磨性比较差,磨轮转速从100 r/min增至400 r/min时,磨损量不断增加且呈线性分布。微弧氧化制备的陶瓷层磨损量在磨损开始时(100 r/min)稍高,磨轮转速到600 r/min时磨损量趋于稳定,磨轮转速到1600 r/min时磨损量仍然呈现较低水平。陶瓷层的冲蚀体积损失率也远低于2A06铝合金基体。  相似文献   

12.
通过在硅酸盐电解液体系中加入(NaPO3)6,研究其对ZAlSi12Cu2Mg1表面微弧氧化陶瓷膜层厚度、孔隙率及相组成的影响。结果表明,当(NaPO3)6的加入量在0~12g/L内逐渐增加时,微弧氧化陶瓷膜层的厚度逐渐上升。加入量为0~6g/L逐渐增加时,膜层孔隙率逐渐下降,超过6g/L时,孔隙率开始上升。电解液中未加(NaPO3)6时,陶瓷膜层主要由γ-Al2O3、α-Al2O3及Al2SiO5组成,α-Al2O3和γ-Al2O3相衍射峰强度大致相同;而加入6g/L(NaPO3)6后,陶瓷层中没有发现Na^+或PO3^-,但α-Al2O3相的衍射峰强度明显高于γ-Al2O3相,且铝基体的衍射峰强度有所降低。  相似文献   

13.
目的 提高D16T铝合金的耐磨损性能。方法 通过向硅酸盐和磷酸盐混合电解液体系中添加2 g/L纳米TiO2添加剂,利用微弧氧化技术在其表面制备微弧氧化陶瓷膜。采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)、显微硬度计、厚度测试仪、摩擦磨损试验机等,研究了纳米TiO2添加剂对D16T铝合金微弧氧化膜的结构和耐磨损性能的影响及机理。结果 纳米TiO2的添加使得微弧氧化膜层的表面变得更加平整、致密,具有更少的微孔和裂纹,大大改善了膜层结构。相比于未添加纳米TiO2的电解液中制得的微弧氧化膜,在含纳米TiO2的电解液中所制得的微弧氧化膜中有新相TiO2生成,并且促使更多的α-Al2O3相和γ-Al2O3相生成,使膜层厚度得到明显增加,膜厚达31.2 μm,显微硬度也得到显著提高,达510HV。纳米TiO2的添加,降低了D16T微弧氧化膜层试样的摩擦系数,平均摩擦系数为0.45,明显低于不含纳米TiO2的D16T微弧氧化膜层试样的摩擦系数(0.75)。结论 加入到电解液中的纳米TiO2在微弧氧化反应过程中已进入到所形成的氧化膜层,并且填充了膜层中的微孔和裂纹,改善了膜层结构,增加了膜层厚度,显著提高了微弧氧化膜层的显微硬度和耐磨损性能。  相似文献   

14.
采用微弧氧化(MAO)技术,以硅酸盐为主要电解液成分,通过加入稀土元素铈以及石墨烯添加剂,在7050高强铝合金表面制备微弧氧化膜层。利用扫描电镜(SEM)、体视显微镜、X射线衍射仪(XRD)、摩擦磨损试验机以及电化学工作站研究微弧氧化陶瓷膜层的形貌、粗糙度、相组成和元素分布以及耐磨性和耐蚀性。结果表明:同时加入4 g/L CeO2和10 g/L的石墨烯制备的复合膜层表面微孔尺寸明显降低,结构致密,耐磨性较好,粗糙度最低(1516.03 nm),膜层主要由α-Al2O3和γ-Al2O3组成。且此时的复合膜层自腐蚀电位最大,自腐蚀电流最小,耐腐蚀性最佳。  相似文献   

15.
采用微弧氧化法在铝合金(ZL101A)基体上制备陶瓷膜层。研究了不同电解液和添加剂对涂层硬度、厚度及相组成的影响。结果表明:膜层厚度、硬度随NaH2PO3和(NaPO3)6的增加而提高。XRD相结构分析表明:涂层中的主要相为γ-Al2O3、α-Al2O3和Mg2Al4Si5O18,随α-Al2O3相增多,膜层的耐蚀性升高。  相似文献   

16.
在Na2SiO3-NaOH体系的电解液中,对Mn元素含量不同的1070纯铝及3003铝合金进行等离子体电解氧化。对所得陶瓷层的厚度及显微硬度进行了测试,并分析了陶瓷层的微观形貌及相组成。结果表明:1070纯铝表面所形成的陶瓷层由α-Al2O3及γ-Al2O3组成,而3003铝合金表面所形成的陶瓷层则由γ-Al2O3组成;处理时间相同时,3003铝合金所形成的陶瓷层较纯铝1070所形成的陶瓷层更厚,但显微硬度更低,致密性下降,Mn元素对反应过程中高温氧化铝相的形成有一定的抑制作用。  相似文献   

17.
对ZAlSi12Cu2Mg1铝合金分别按T1和T6进行预先热处理,然后在NaOH-Na2SiO3电解液体系下进行表面微弧氧化,并对微弧氧化层的结构及性能进行分析.利用电涡流测厚仪测量氧化层的厚度,用显微硬度计测量氧化层截面的显微硬度,并进行截面形貌观察,用XRD分析氧化层相组成.结果表明:在微弧氧化前,该合金进行的预先热处理对后续的微弧氧化影响很显著;在合金表面获得了较厚的微弧氧化层,氧化层与基体互相镶嵌,并结合良好.氧化层主要由α-Al2O3、γ-Al2O3、Al、Al2SiO5及非晶相组成.经T6处理合金所获得的微弧氧化层的结构和性能优于经T1处理的.  相似文献   

18.
在硅酸盐电解液体系中对7075铝合金表面采用微弧氧化(MAO)法制备陶瓷膜层,并借助扫描电镜、三维立体显微镜、X射线衍射仪、显微硬度计、涂层附着力划痕仪和摩擦磨损实验机等对微弧氧化膜层的形貌及性能进行研究.结果表明:电流密度对微弧氧化膜层的组织与性能有较大影响.α-A12O3是微弧氧化膜层的主要组成相,微弧氧化膜层具有...  相似文献   

19.
硅酸盐电解液中铝合金微弧氧化陶瓷膜层的结构与性能   总被引:11,自引:0,他引:11  
在硅酸盐电解液中利用微弧氧化方法,在LYl2铝合金上制备了陶瓷膜层。用扫描电镜(SEM)和X射线衍射仪(XRD)观察分析了其形貌和相组成,测定了膜层厚度、显微硬度,并对涂层进行了耐蚀性和抗热震性研究。结果表明,涂层分为两层,外层为疏松层,内层为致密层,涂层总厚度76μm,致密层厚度50μm,硬度1500HV;涂层相组成为γ-Al2O3和α-Al2O3;涂层在30℃、10%NaOH水溶液和30℃、20%Nacl水溶液中的耐蚀性极好。  相似文献   

20.
崔联合  彭桂枝  张迎涛 《表面技术》2014,43(2):32-35,41
目的研究ZA43合金微弧氧化陶瓷膜的摩擦磨损特性随氧化时间的变化规律。方法制备微弧氧化时间不同的ZA43合金微弧氧化陶瓷膜样品,采用球-盘磨损方法进行摩擦磨损实验,分析陶瓷膜磨损前后的形貌、物相组成及元素组成,测试膜层厚度和显微硬度。结果陶瓷膜主要由α-Al2O3和γ-Al2O3相组成。随着氧化时间的延长,陶瓷膜厚度和平均硬度逐渐增大。在干摩擦条件下,陶瓷膜的摩擦系数和磨损失重随氧化时间的延长而降低。结论随着氧化时间的延长,ZA43合金微弧氧化陶瓷膜的耐磨性逐渐提高,其磨损机制以磨粒磨损为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号