首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用两步法合成了1-戊基-3-甲基咪唑硫氰酸盐([Pmim][SCN])新型离子液体电解质,测定了该电解质的物理化学性质。并用这种新型离子液体电解质与活性炭电极组装成模拟超级电容器,研究了所制超级电容器的电化学性能。结果表明:所制离子液体电导率较高,密度和表面张力都随温度升高而减小,模拟超级电容器的工作电压可达4.0 V,比电容可达421.05 F/cm3,充放电效率为96.3%,且该离子液体具有很好的与常见有机溶剂互溶的能力,具有成为超级电容器用电解质的应用潜力。  相似文献   

2.
1-丁基-3-甲基咪唑离子液体在超级电容器中的应用   总被引:2,自引:1,他引:1  
两步法合成了1-丁基-3-甲基咪唑三氟乙酸盐(BMI-CF3CO2)、1-丁基-3-甲基咪唑六氟磷酸盐(BMI-PF6)及1-丁基-3-甲基咪唑四氟硼酸盐(BMI-BF4)三种离子液体,研究了这三种离子液体所制超级电容器的电化学性能。结果表明:BMI-CF3CO2在电化学稳定性及充放电效率等方面优于BMI-PF6和BMI-BF4;BMI-CF3CO2离子液体电解液电势窗口达到4.0V,所制备的超级电容器在3.6V电压下循环寿命超过1000次。  相似文献   

3.
介绍了一种新型离子液体混合电解质(液),由离子液体1-乙基-3-甲基咪唑硫酸乙酯盐(EMIES)与高氯酸锂盐按照不同配比混合制备而成。测定了这种新型混合电解质(EMIES+Li Cl O_4)的一系列热力学性质,如:电导率、密度、表面张力等,发现其黏度和电导率随温度的变化呈相反趋势。锂盐的加入带来了混合电解液电导率的非线性变化,而当其中高氯酸盐的摩尔比为0.05时,电解液具有最佳电导率和黏度。进而,用此浓度的混合电解液与活性炭电极组装成超级电容器,采用交流阻抗、恒流充放电及循环伏安等测试手段对其性能进行测试与研究。结果表明:这种离子液体混合电解液电化学窗口达到5.1 V,单电极比电容为458.65 F·cm~(-3),充放电测试1000次以后,比电容只下降了1.9%。表明该混合电解液具有良好的电容特性、可逆性及循环特性,具备成为高性能超级电容器电解液的应用潜力。  相似文献   

4.
利用离子液体具有的高热稳定性、高离子电导率的特点,选用了几种离子液体用作片式铝电解电容器工作电解液。性能测试结果表明,以马来酸或邻苯二甲酸的1,3-二烷基取代的咪唑盐或四氢吡咯盐的离子液体为电解质,所制成的电容器能通过105℃1000h寿命试验和耐回流焊接热试验。但电解液的闪火电压与传统电解液相比较低,一般只能做50V以下的低压电容器产品。  相似文献   

5.
采用两步法合成功能化离子液体1-甲基-3-丁基咪唑三氟乙酸盐离子液体([Bmim][CF_3CO_2]),并将其与有机电解质四氟硼酸螺环季铵盐([(C_4H_8)_2N][BF_4])组成不同浓度配比的新型混合电解液。采用活性炭为电极,组装成超级电容器,通过循环伏安、恒流充放电、交流阻抗等方法对其电化学性能进行了研究。结果显示:混合电解液的浓度为2.06 mol/L时的性能最优,这种新型的混合电解液25℃时电导率为3.99×10~(–3) S/cm,电化学窗口可达2.7 V,内阻0.96?,经过1 000次充、放电循环后仍可保留98%的初始比电容,说明该混合电解液具有突出的电化学性能和巨大的市场应用潜力。  相似文献   

6.
研究了有机溶剂[乙腈(AN)、丙酮(Acet)]对离子液体1-乙基-3-甲基咪唑四氟硼酸盐[(EMIm)BF4]电导率和电化学性能的影响。混合电解液体系的电导率在离子液体与有机溶剂的摩尔比为4∶6时达最大值。循环伏安和恒流充放电测试结果表明,添加有机溶剂在很大程度上改善了电容器的电容特性。电容器的比电容在(EMIm)BF4与AN或Acet的摩尔比为4∶6时达最大值,分别为233,173F/g。  相似文献   

7.
以1-甲基-3-乙基咪唑四氟硼酸离子液体和果糖为原料,微波作用下一步制得一种新型碳点离子液体复合物,用此复合物代替部分导电剂和粘结剂制成新型炭基超级电容器,并与传统的炭基超级电容器进行了比较研究.结果表明:所制复合物中有大量直径小于4nm的碳纳米粒子,70℃时电导率达到13.26×10-3S·cm-1,所制超级电容器充放电效率由传统炭基超级电容器的89.1%提高到97.3%,比电容由115.7 F·g-1提高到251.1 F·g-1,内阻由1.95 Ω降低为1.23 Ω,且循环性能显著提高.  相似文献   

8.
通过选择性溶解法制备了多孔结构的聚乙烯醇(PVA)基大分子羧甲基纤维素(CMC)复合凝胶电解质,以此提高凝胶电解质的离子电导率和柔性超级电容器的电化学性能。使用扫描电子显微镜(SEM)对凝胶电解质的形貌进行了表征。凝胶内部为多孔的网络结构,不规则的孔均匀分布在PVA基体中。同时,采用活性炭作为电极组装成柔性超级电容器。对凝胶电解质的离子电导率、吸水率和热稳定性进行了测试,实验结果表明多孔PVA-10%CMC复合凝胶电解质离子电导率最高可达64.3 mS/cm,具有130.3%的吸水率和63.8%的保水率,并且在-10、25和40℃温度梯度下可以稳定使用。此外,利用其组装的柔性超级电容器的比电容最高可达40.0 F/g,循环10 000圈后的比电容保持率为55%,并且有优异的倍率性能和弯曲性能。因此,多孔结构的构建和CMC的复合是提高凝胶电解质性能的有效方法。  相似文献   

9.
以1-甲基-3-乙基咪唑四氟硼酸离子液体和果糖为原料,微波作用下一步制得一种新型碳点离子液体复合物,用此复合物代替部分导电剂和粘结剂制成新型炭基超级电容器,并与传统的炭基超级电容器进行了比较研究。结果表明:所制复合物中有大量直径小于4nm的碳纳米粒子,70℃时电导率达到13.26×10–3S·cm–1。所制超级电容器充放电效率由传统炭基超级电容器的89.1%提高到97.3%,比电容由115.7 F.g–1提高到251.1 F·g–1,内阻由1.95Ω 降低为1.23Ω ,且循环性能显著提高。  相似文献   

10.
超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容,是从二十世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,  相似文献   

11.
以聚乙烯醇(PVA)与羧基改性聚乙烯醇(CMPVA)为基体,通过原位电沉积法在活性炭电极表面分别制备出聚乙烯醇硼酸钾(PVAPB)水凝胶电解质(HGE)和羧基改性聚乙烯醇硼酸钾(CMPVAPB)HGE。对这两种HGE的结构、形貌、热稳定性和电化学性能进行研究和对比。结果表明:两种HGE均具有稳定的化学结构,并表现出良好耐热性及优异的电化学性能;与PVAPB HGE相比,CMPVAPB HGE与电解质盐的相容性更好,电解质盐浓度更高。由CMPVAPB HGE组装的超级电容器(SC),其离子电导率(1.23×10~(–3)S/cm)和比容量(94.9F/g)高于PVAPB HGE组装的SC(分别为1.11×10~(–3) S/cm和90.6 F/g)。  相似文献   

12.
超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容,是从二十世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。  相似文献   

13.
新型材料MXene(过渡金属二维碳化物,氮化物和碳氮化物)由于其良好的电化学活性而被广泛应用于储能材料。聚吡咯因其具有稳定的导电性而常用作超级电容器材料。通过原位聚合法成功制备MXene(Ti_3C_2T_x)和聚吡咯(PPy)复合材料。利用扫描电镜(SEM)和X射线衍射仪(XRD)对Ti_3C_2T_x/PPy复合电极材料进行表征,结果表明PPy均匀地包覆在Ti_3C_2T_x表面。这种独特的复合材料展现良好的协同作用,有效提高了电子和离子的传输速率。电化学测试表明:Ti_3C_2T_x和聚吡咯质量比为2∶1时复合材料表现出最好的电化学性能,当电流密度为1 A·g~(-1)时,Ti_3C_2T_x/PPy-2的比电容达到139 F·g~(-1),并且拥有较好的倍率性能。结果表明Ti_3C_2T_x/PPy复合材料可用于制备超级电容器电极材料。  相似文献   

14.
以水溶性酚醛树脂为原料,采用KOH活化法制备超级电容器用高比表面活性炭(AC)。考察活化温度所引起活性炭的孔隙结构变化,进一步分析其对超级电容器电化学性能的影响。实验结果显示,在650℃所制得活性炭(AC650)具有最大比表面积和最小的微孔比率;然而在700℃所制得活性炭(AC700)和750℃所制得活性炭(AC750)呈现微孔特征。电化学阻抗谱(EIS)揭示由于AC700和AC750的微孔相互贯通,使得它们的导电性和离子迁移阻力均优于AC650。此外,倍率充放电性能和1 000次循环测试也表明AC650的电化学性能是由其自身导电性和电解液离子迁移阻力所决定。  相似文献   

15.
合成了新型电解质材料——四烷基铵盐(季铵盐),给出了该类电解质材料的基本性质;研究并讨论了非水有机溶剂-季铵盐系统工作电解液的基础性质;对采用该电解液系统的电容器(50V-33μF)进行了105℃、1000h的贮存寿命试验和工作寿命试验,并与传统高温工作电解液进行了对比分析,证实了该类电解质的化学、电化学稳定性。该类电解质适用于宽温或高温长寿命铝电解电容器。  相似文献   

16.
最小的大容量电容器——Evans混合电容器   总被引:2,自引:0,他引:2  
介绍了一种由钽阳极、Ta2O5介质、液体电解质和RuO2阴极组成的高能量密度电容器——Evans混合电容器 (Evans Hybrid capacitors)。它具有与电化学电容器相当的能量密度和比电解电容器更完善的交流特性。单元工作电压达215 V。目前已实现了用改进封装技术将若干个该类电容器并联封装在同一外壳内。给出了50 V,18 mF混合电容的性能数据。  相似文献   

17.
采用1 mol/L的LiBF4/AN(CH3CN)为电解液,对LiNi1/3Co1/3Mn1/3O2/AC体系混合超级电容器进行了电化学性能对比研究.通过优化正负极的容量配比,分别评价了对应的超级电容器的充放电性能、倍率性能和循环寿命.结果表明,在正负极容量配比为4:1时,该体系超级电容器的比能量为11 Wh/kg、比...  相似文献   

18.
40V混合型超级电容器单元的研制   总被引:8,自引:0,他引:8       下载免费PDF全文
张莉  邹积岩  郭莹  王泉水 《电子学报》2004,32(8):1253-1255
通过优化组合电解电容器的阳极和电化学电容器的阴极,研制了一种单元工作电压为40V的混合型超级电容器,该电容器与电化学电容器相比较,工作电压得到了实质性地提高.经电气性能测试表明它具有高储能密度和快速充放电的能力,频谱阻抗(EIS)分析显示它具有优良的阻抗特性和频率特性.  相似文献   

19.
MnO_(2)以其天然储量丰富、价格低廉、环境友好等优势常被用作超级电容器电极材料,但其较差的导电性限制了其应用,因而为获得优良电化学性能,MnO_(2)基复合材料的研究十分广泛。本文从不同维度MnO_(2)基复合材料的角度,对近年来其在超级电容器领域的研究和应用进行了综述。对MnO_(2)同碳材料、导电聚合物以及其他过渡金属(氢)氧化物复合所形成的球型结构复合材料以及一维、二维、三维复合材料的结构特点、合成方法、电化学性能进行了总结和对比。并对MnO_(2)基复合材料在超级电容器领域未来的研究重点进行了分析和展望。可为MnO_(2)基超级电容器复合电极材料结构的合理设计、构筑及电化学性能改善提供参考。  相似文献   

20.
将LiPF_6溶入EC/EMC/DMC作为锂氧电池电解质主体,并分别加入[Emim]BF_4和[DEME]TFSI离子液体制成复合电解质材料,组装成锂氧电池。通过循环伏安、交流阻抗、恒流充放电等方式研究复合电解质的电化学性能。结果表明,LiPF_6溶入EC/EMC/DMC-[Emim]BF_4体系复合电解质表现出较优的电化学性能,在0.025×10~(–3)A·cm~(–2)电流密度下电池首次放电比容量为2 672×10~(–3)Ah·g~(–1),能量密度达6.468×10~(–3) Wh·cm~(–2)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号