首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The electrochemical performances of fluorinated graphite have been improved by coating a uniform carbon layer on commercial CFx (x = 1) powder used as cathode material in lithium battery. In comparison with the cell using un-coated CFx as cathode, the cell using carbon coated CFx cathode has a higher energy density and higher power density, particularly at higher discharge current rates (1C above). This is because the conductive carbon coating provides the exterior connectivity between particles for facile electron conduction, resulting in high rate performance.  相似文献   

2.
In this work we demonstrate that the thermal treatment of CFx cathode material just below the decomposition temperature can enhance discharge performance of Li/CFx cells. The performance enhancement becomes more effective when heating a mixture of CFx and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CFx material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CFx, which yields a subfluorinated carbon (CFxδ), instead of a highly conductive carbon. In the case of CFx/AC mixture, the AC provides extra carbon that reacts with F2 and fluorocarbon radicals generated by the thermal decomposition of CFx to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CFx/CA ratio on the discharge performance of CFx cathode is discussed. As an example, a Li/CFx cell using CFx treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.  相似文献   

3.
Carbothermal treatment was used to improve the discharge rate performance of primary lithium/carbon monofluoride (Li/CFx with x = 1) batteries. The treatment was carried out by heating a mixture of CFx and carbon black (CB) just below the decomposition temperature of CFx under nitrogen for 2 h. In the treatment, poly(vinylidene fluoride-co-hexafluoropropylene) (Kynar) was used as a fluorinated polymer binder to press the CFx/CB mixture into pellets. It was shown that the content of Kynar significantly affected the discharge performance of the resulting treated-CFx (T-CFx). This can be attributed to the catalytic effect of HF formed by the pyrolysis of Kynar on the decomposition of CFx and on the reaction of CB with the volatile fluorocarbons formed by the decomposition of CFx. The discharge performance of T-CFx cathode was also affected by the temperature of carbothermal treatment and by the ratio of CFx to CB. In this work the best result was obtained from a treatment conducted at 470 °C on a 87CFx/10CB/3Kynar (by weight) mixture. In the discharge condition of C/5 and 20 °C, the Li/CFx cell with such-obtained T-CFx cathode showed about 95 mV higher voltage than the control cell while retaining nearly the same specific capacity. Impedance analyses indicate that the improved discharge performance is mainly attributed to a reduction in the cell reaction resistance (Rcr) that includes an ohmic resistance related to the ionic conductivity of the discharge product shell and a Faradic resistance related to the processes of charge-transfer and Li+ ion diffusion in the CFx reaction zone.  相似文献   

4.
A mesoporous carbon sphere with the uniform channels (OMC) is employed as the conductive matrix in the sulfur cathode for the lithium sulfur battery based on all-solid-state PEO18Li(CF3SO2)2N-10 wt%SiO2 electrolyte. Cyclic voltammograms (CV) and electrochemical impedance spectrum (EIS) suggest that the electrochemical stability of the S-OMCs is obviously superior to the pristine sulfur cathode. The S-OMCs composite shows excellent cycling performance with a reversible discharge capacity of about 800 mAh g−1 after 25 cycles. This would be attributed to an appropriate conductive structure in which the active sulfur is highly dispersed in and contacted with the OMCs matrix.  相似文献   

5.
Lithium iron phosphate‐carbon (LiFePO4/multiwalled carbon nanotubes (MWCNTs)) composite cathode materials were prepared by a hydrothermal method. In this study, we used MWCNTs as conductive additive. Poly (vinylidene fluoride‐co‐hexafluoropropylene)‐based solid polymer electrolyte (SPE) was applied. The structural and morphological performance of LiFePO4/MWCNTs cathode materials was investigated by X‐ray diffraction and scanning electron microscopy/mapping. The electrochemical properties of Li/SPE/LiFePO4‐MWCNTs coin‐type polymer batteries were analyzed by cyclic voltammetry, ac impedance and galvanostatic charge/discharge tests. Li/SPE/LiFePO4‐MWCNTs polymer battery with 5 wt % MWCNTs demonstrates the highest discharge capacity and stable cyclability at room temperature. It is indicated that LiFePO4‐MWCNTs can be used as the cathode materials for lithium polymer batteries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
dc-polarization and ac-impedance techniques were used to analyze the discharge characteristic of a primary Li/CFx cell. In most cases, impedance spectrum of a Li/CFx cell shows a suppressed semicircle followed by a sloping straight line. The semicircle is shown to present a cell reaction resistance (Rcr), which reflects an ohmic resistance (mainly, ionic conductivity of the discharge product shell) and a charge-transfer process. It is shown that the overall resistance of a Li/CFx cell is dominated by the CFx cathode, whose resistance is further dominated by the Rcr that is found to be extremely sensitive to the temperature. Therefore, the low temperature performance and rate capability of a Li/CFx cell are mainly determined by the CFx cathode. In addition, based on the discharge curve and open circuit voltage (OCV) recovery of a Li/CFx cell, we proposed a “core-shell” model consisting of a shrinking “CFx core” and a growing “product shell” for the discharge process of CFx cathode. The “product shell” plays an important role in the discharge performance of Li/CFx cells.  相似文献   

7.
Prospective positive-electrode (cathode) materials for a lithium secondary battery, viz., Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08), were synthesized using a solid-state pyrolysis method. The structural and electrochemical properties were examined by means of X-ray diffraction, cyclic voltammetry, SEM and charge–discharge tests. The results demonstrated that the powders maintain the α-NaFeO2-type layered structure regardless of the chromium content in the range x ≤ 0.08. The Cr doping of x = 0.04 showed improved capacity and rate capability comparing to undoped Li[Li0.2Ni0.2Mn0.6]O2. ac impedance measurement showed that Cr-doped electrode has the lower impedance value during cycling. It is considered that the higher capacity and superior rate capability of Cr-doping samples would be ascribed to the reduced resistance of the electrode during cycling.  相似文献   

8.
In the Sandia National Laboratories internally funded Laboratory Directed Research and Development (LDRD) project we are studying the fundamental limitation(s) of the discharge reaction that reduces the operating voltage of the Li/(CFx)n cells at moderate discharge rates. As a subset of this effort, we are evaluating the electrochemical properties of (CFx)n electrodes prepared with materials from different vendors at different temperatures and in two different electrolytes in order to provide an optimized system to the above study. The temperatures studied span the range −51 to 72 °C. The electrolytes consist of EC:EMC (3:7 wt.%)–1.2 M LiPF6 denoted as HCE (Highly Conductive Electrolyte) and EC:PC:EMC (1:1:3 wt.%)–1 M LiBF4 denoted as SNL-E (Sandia National Laboratories Electrolyte). The four different (CFx)n materials studied showed comparable capacity at 0 °C and above in the two electrolytes. However, at sub-ambient temperatures the SNL-E performed better than the HCE. The performance improvement with SNL-E comes mainly from a lower interfacial resistance compared to HCE.  相似文献   

9.
In this work, a 1:1 by weight blend of acetonitrile (AN) and γ-butyrolactone (BL) was studied as the solvent of low temperature electrolyte for high energy density Li/CFx batteries. Both visual observation and impedance analysis show that metallic Li is kinetically stable in a 0.5 m LiBF4 1:1 AN/BL electrolyte. This property is attributed to the formation of a protective passivation film on the surface of metallic Li, and it has been successfully used to develop the low temperature electrolyte for Li/CFx cells. It is shown that the cell with such an electrolyte outperforms the control cell with 0.5 m LiBF4 1:1 (wt.) propylene carbonate (PC)/1,2-dimethoxyethane (DME) electrolyte in both power capability and low temperature discharge performance. Impedance analyses reveal that the improved discharge performance is attributed to the reduction in both the bulk resistance and cell reaction resistance of the Li/CFx cell, which is related to the high ionic conductivity of the AN/BL electrolyte. Due to the chemical incompatibility between metallic Li and AN at high temperatures, the storage and operation temperature for the Li/CFx cells with 0.5 m LiBF4 1:1 AN/BL electrolyte is limited to or below ambient temperature (30 °C).  相似文献   

10.
Although (CFx)n has the highest theoretical specific energy of all lithium primary batteries known, the practical specific energy (including packaging) is very small on the order of ∼10% for small capacity cells (<5 Ah) and between 20 and 30% for large capacity cells (>100 Ah). Even these can be achieved only at a very low discharge rate <C/250 (250 h rate). If either the discharge rate is increased or the discharge temperature is reduced below 0 °C the % delivered energy goes down even further. At Sandia National Laboratories we are performing research to improving % delivered energy by: (1) incorporating engineering solution and (2) adopting a new chemical approach. The engineering solution effort will not be discussed here except to mention that light weight metal such as titanium (Ti) will be considered for hardware instead of stainless steel. The chemical approach involves adding an anion-binding-agent (ABA) to the electrolyte solution to dissolve the LiF generated in the discharge reaction. We studied three boron containing neutral ABAs and the most promising ABA {Tris(1,1,1,3,3,3-hexafluoroisopropyl)borate} will be discussed further. The delivered capacity/energy (per unit weight of the cathode) is higher for SNL-built coin cells containing the ABA additive than for the commercial coin cells by 80%. These cells were tested at a C/44 rate. This improvement especially at a high discharge rate is attributed to the ability of the ABA to dissolve the LiF from plugging the cathode pores and thus keep the bulk of the cathode accessible for further discharge reaction. We have also tested commercial cells and commercial electrodes in coin cells. In general, at high rate discharge, the performance of SNL cells containing our electrolyte and electrode were better than the rest.  相似文献   

11.
A simple method has been employed to prepare pillared layered Li1−2xCaxCoO2 cathode materials by cationic exchange under hydrothermal conditions. The synthesized materials were characterized by means of X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), field emission scanning electron microscope (FE-SEM) and galvanostatic charge–discharge cycling. The XRD data of the products show that they are single phases and retain the layered α-NaFeO2 type structure. The FE-SEM images of the materials prepared by hydrothermal method show uniform small particles, and the particle size of the materials is about 200 nm. The initial discharge specific capacities of layered LiCoO2 and pillared layered Li0.946Ca0.027CoO2 cathode materials calcined at 800 °C for 5 h within the potential range of 3.0–4.3 V (vs. Li+/Li) are 144.6 and 142.3 mAh g−1, respectively, and both materials retain good charge–discharge cycling performance. However, with increasing upper cutoff voltage, the pillar effect of Ca2+ in Li1−2xCaxCoO2 becomes more significant. The pillared layered Li0.946Ca0.027CoO2 has a higher capacity with an initial discharge specific capacity of 177.9 and 215.8 mAh g−1 within the potential range of 3.0–4.5 and 4.7 V (vs. Li+/Li), respectively, and retains good charge–discharge cycling performance.  相似文献   

12.
Li[Mn0.5−xCr2xNi0.5−x]O2 (0 < 2x <0.2) (Mn/Ni = 1) cathode materials have been synthesized by a solution method. X-ray diffraction patterns of the as-prepared materials were fitted based on a hexagonal unit cell (α-NaFeO2 layer structure). The extent of Li/Ni intermixing decreased, and layering of the structure increased, with increasing Cr content. Electrochemical cycling of the oxides, at 30 °C in the 3–4.3 V range vs. Li/Li+, showed that the first charge capacity increased with increasing Cr content. However, maximum discharge capacity (∼143 mAh g−1) was observed for 2x = 0.05. X-ray absorption near edge spectroscopic (XANES) measurements on the K-edges of transition metals were carried out on pristine and delithiated oxides to elucidate the charge compensation mechanism during electrochemical charging. The XANES data revealed simultaneous oxidation of both Ni and Cr ions, whereas manganese remains as Mn4+ throughout, and does not participate in charge compensation during oxide delithiation.  相似文献   

13.
The commercial 18650 Li(Ni1/3Co1/3Mn1/3)O2/graphite high power batteries were prepared and their electrochemical performance at temperatures of 25 and 50 °C was extensively investigated. The results showed that the charge-transfer resistance (Rct) and solid electrolyte interface resistance (Rsei) of the high power batteries at 25 °C decreased as states of charge (SOC) increased from 0 to 60%, whereas Rct and Rsei increased as SOC increased from 60 to 100%. The discharge plateau voltage of batteries reduced greatly with the increase in discharge rate at both 25 and 50 °C. The high power batteries could be discharged at a very wide current range to deliver most of their capacity and also showed excellent power cycling performance with discharge rate of as high as 10 C at 25 °C. The elevated working temperature did not influence the battery discharge capacity and cycling performance at lower discharge rates (e.g. 0.5, 1, and 5 C), while it resulted in lower discharge capacity at higher discharge rates (e.g. 10 and 15 C) and bad cycling performance at discharge rate of 10 C. The batteries also exhibited excellent cycle performance at charge rate of as high as 8 C and discharge rate of 10 C.  相似文献   

14.
Cathode materials prepared by a co-precipitation are 0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (0.2 ≤ x ≤ 0.4) cathode materials with a layered-spinel structure. In the voltage range of 2.0-4.6 V, the cathodes show more than one redox reaction peak during its cyclic voltammogram. The Li/0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (x = 0.3, y = 0.2) cell shows the initial discharge capacity of about 200 mAh g−1. However, when x = 0.2 and y = 0.1, the cell exhibits a rapid decrease in discharge capacity and poor cycle life.  相似文献   

15.
Layer-structured Zr doped Li[Ni1/3Co1/3Mn1−x/3Zrx/3]O2 (0 ≤ x ≤ 0.05) were synthesized via slurry spray drying method. The powders were characterized by XRD, SEM and galvanostatic charge/discharge tests. The products remained single-phase within the range of 0 ≤ x ≤ 0.03. The charge and discharge cycling of the cells showed that Zr doping enhanced cycle life compared to the bare one, while did not cause the reduction of the discharge capacity of Li[Ni1/3Co1/3Mn1/3]O2. The unchanged peak shape in the differential capacity versus voltage curve suggested that the Zr had the effect to stabilize the structure during cycling. More interestingly, the rate capability was greatly improved. The sample with x = 0.01 presented a capacity of 160.2 mAh g−1 at current density of 640 mA g−1(4 C), corresponding to 92.4% of its capacity at 32 mA g−1(0.2 C). The favorable performance of the doped sample could be attributed to its increased lattice parameter.  相似文献   

16.
Amorphous LiCo1/3Mn1/3Ni1/3O2 thin films were deposited on the NASICON-type Li-ion conducting glass ceramics, Li1+x+yAlxTi2−xSiyP3−yO12 (LATSP), by radio frequency (RF) magnetron sputtering below 130 °C. The amorphous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Li/PEO18-Li(CF3SO2)2N/LATSP/LiCo1/3Mn1/3Ni1/3O2/Au all-solid-state cells were fabricated to investigate the electrochemical performance of the amorphous films. It was found that the low-temperature deposited amorphous cathode film shows a high discharge voltage and a high discharge capacity of around 130 mAh g−1.  相似文献   

17.
In this work we report a non-aqueous electrolyte that supports long-term operation of the Li/air battery in dry ambient environments based on a non-hydrolytic LiSO3CF3 salt and a low volatility propylene carbonate (PC)/tris(2,2,2-trifluoroethyl) phosphate (TFP) solvent blend. By measuring and analyzing the viscosity of PC/TFP solvent blends, the ionic conductivity of electrolytes, and the discharge performance of Li/air cells as a function of the PC/TFP weight ratio, we determined the best composition of the electrolyte is 0.2 m (molality) LiSO3CF3 7:3 wt. PC/TFP for Li/O2 cells and 0.2 m LiSO3CF3 3:2 wt. PC/TFP for Li/air cells. Discharge results indicate that Li/air cells with the optimized electrolyte are significantly superior in specific capacity and rate capability to those with baseline electrolytes. More interestingly, the improvement in discharge performance becomes more significant as the discharge current increases or the oxygen partial pressure decreases. These results agree neither with the viscosity of the solvent blends nor the ionic conductivity of the electrolytes. We consider that the most likely reason for the performance improvement is due to the increased dissolution kinetics and solubility of oxygen in TFP-containing electrolytes. In addition, the electrolyte has a 5.15 V electrochemical window, which is suitable for use in rechargeable Li/air batteries.  相似文献   

18.
The effects of fluorine substitution on the electrochemical properties of LiFePO4/C cathode materials were studied. Samples with stoichiometric proportion of LiFe(PO4)1−xF3x/C (x = 0.025, 0.05, 0.1) were prepared by adding LiF in the starting materials of LiFePO4/C. XRD and XPS analyses indicate that LiF was completely introduced into bulk LiFePO4 structure in LiFe(PO4)1−xF3x/C (x = 0.025, 0.05) samples, while there was still some excess of LiF in LiFe(PO4)0.9F0.3/C sample. The results of electrochemical measurement show that F-substitution can improve the rate capability of these cathode materials. The LiFe(PO4)0.9F0.3/C sample showed the best high rate performance. Its discharge capacity at 10 C rate was 110 mAh g−1 with a discharge voltage plateau of 3.31–3.0 V versus Li/Li+. The LiFe(PO4)0.9F0.3/C sample also showed obviously better cycling life at high temperature than the other samples.  相似文献   

19.
A new type of Li1−xFe0.8Ni0.2O2–LixMnO2 (Mn/(Fe + Ni + Mn) = 0.8) material was synthesized at 350 °C in air atmosphere using a solid-state reaction. The material had an XRD pattern that closely resembled that of the original Li1−xFeO2–LixMnO2 (Mn/(Fe + Mn) = 0.8) with much reduced impurity peaks. The Li/Li1−xFe0.8Ni0.2O2–LixMnO2 cell showed a high initial discharge capacity above 192 mAh g−1, which was higher than that of the parent Li/Li1−xFeO2–LixMnO2 (186 mAh g−1). We expected that the increase of initial discharge capacity and the change of shape of discharge curve for the Li/Li1−xFe0.8Ni0.2O2–LixMnO2 cell is the result from the redox reaction from Ni2+ to Ni3+ during charge/discharge process. This cell exhibited not only a typical voltage plateau in the 2.8 V region, but also an excellent cycle retention rate (96%) up to 45 cycles.  相似文献   

20.
This paper describes the fabrication and testing of C-LiFePO4/graphite battery with different conductive carbon additives: carbon nanotube (CNT) or carbon black (CB). The discharge capacity, rate capability and cyclic performance of the battery were investigated. Compared with the batteries with CB additive, those with CNT additive show better electrochemical performances with capacity retention ratio of 99.2% after 50 cycles, and the ratio of discharge capacity at 0.1 C rate to that at 1 C rate is 94.6%. The reason for the difference in electrochemical property was studied with cyclic voltammagrams and AC impedance. It was found that, with CNT additive, the polarization voltage was decreased from 0.3 to 0.2 V, and the impedance was decreased from 423.2 to 36.88 Ω. The structures of active materials after cycling were characterized using XRD. The better crystal retaining of LiFePO4 was found in the active materials with CNT added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号