首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
制备了聚丙烯(PP)/有机膨胀型阻燃体系(IFR)、PP/IFR/可膨胀石墨(EG)和PP/IFR/可膨胀石墨(EG)/协效剂氧化锌(ZnO)三种体系,通过力学性能、氧指数(LOI)、垂直燃烧测试及热重分析(TG),探讨了复配膨胀型阻燃体系IFR/EG与协效阻燃剂ZnO之间的协同效应。结果表明,当IFR/EG/ZnO质量比为9.25/9.25/1.5时,阻燃PP的LOI值达到最高,同时阻燃PP的力学性能比不含ZnO的PP有所提高。TG结果表明,ZnO的加入使阻燃PP的热稳定性得到提高,形成了更稳定的保护层,从而提高了PP的阻燃效果。  相似文献   

2.
以可膨胀石墨(EG)与聚磷酸铵(APP)复配组成新型膨胀型阻燃剂(IFR),并将其应用于低密度聚乙烯(LDPE)中,当总添加量(质量分数)为15%,EG/APP质量比为3 1∶时,复合材料氧指数达到29%,而单独加入EG或者APP时只有27%和21%。表明二者具有良好的协同阻燃效果,并通过热失重测试(TG)、扫描电镜分析(SEM)、傅里叶红外分析(FTIR)阐明了APP和EG在固相和气相中的协同机理。  相似文献   

3.
分别采用两种不同的磷-氮(P-N)膨胀型阻燃剂(IFR-A,IFR-B)、聚磷酸铵(APP)及红磷(RP)协同可膨胀石墨(EG)阻燃乙烯-醋酸乙烯酯共聚物(EVA),经辐照交联得到模缩套制品,对合成材料阻燃性能、力学性能进行测试分析,观察燃烧后残炭形貌,进而探讨阻燃体系的阻燃机理,同时研究了可膨胀石墨粒径对材料力学性能的影响。结果表明,EG与不同P-N阻燃剂间存在不同程度的协同效应,模缩套产品性能优异,低害环保,可应用于电线电缆及其附件领域。  相似文献   

4.
以聚磷酸铵(APP)、三聚氰胺(MEL)和季戊四醇(PER)作为膨胀型阻燃剂,可膨胀石墨为阻燃协效剂,硅丙乳液为成膜物质,钛白粉为颜填料,水为溶剂制备出了一种可用于铁丝网的环保膨胀型阻燃涂料。通过正交试验确定了膨胀型阻燃剂的最佳配比;通过单一变量因素对成膜物质、阻燃协效剂种类进行了筛选,并对其最佳添加量进行了优化。结果表明:当硅丙乳液的添加量为30%,聚磷酸铵∶三聚氰胺∶季戊四醇∶可膨胀石墨质量比为20∶15∶13∶2时,所制备的膨胀型阻燃涂料具有较好的阻燃性能。  相似文献   

5.
通过添加可膨胀石墨(EG)和聚磷酸铵(APP)单组分阻燃剂及其复配阻燃剂,制备了聚氨酯–酰亚胺(PUI)泡沫塑料阻燃体系,并对其阻燃性能、热性能、表面碳层形貌及力学性能等进行了研究。结果表明,在相同阻燃剂添加量下,复配阻燃体系的极限氧指数(LOI)值高于单一阻燃剂阻燃体系,PUI/EG/APP体系的LOI值由18.6%提高至30.9%。热失重分析表明EG和APP间的相互作用导致了PUI/EG/APP体系在高温阶段的热降解速率下降,残炭率显著上升。扫描电镜分析表明PUI/EG/APP体系在燃烧后能生成更加连续和致密的炭层。在相同阻燃剂添加量的情况下,EG/APP复配使用能够减少EG对PUI压缩性能的损害。  相似文献   

6.
《塑料》2019,(6)
三聚氰胺是氮系阻燃剂,具有无卤、低毒、无腐蚀、阻燃效率高且价格低廉等特点,因此,具有广泛的适用范围。可膨胀石墨(EG)能够受热迅速膨胀,在材料表面迅速形成有效的阻隔,其表面的EG会剧烈膨胀并覆盖于材料表面,能够抑制可燃性气体从材料中溢出,隔绝了外界氧气与材料的接触,同时阻碍了燃烧热向材料内部传递。将无卤的有机阻燃剂三聚氰胺和无机阻燃剂EG作为研究对象,研究了2种阻燃剂单独使用对阻燃性能的影响,以及2种阻燃剂复配使用时对阻燃性能的影响。结果表明,当无机阻燃剂EG单独使用时较有机阻燃剂三聚氰胺单独使用时的阻燃性能更佳;有机-无机无卤阻燃剂复合使用时,协同阻燃效果较好。当EG和三聚氰胺按照4∶2的比例加入时,聚氨酯泡沫材料的氧指数可达34. 1,该试样在600℃时,失重率约为52. 6%,而未加阻燃剂试样反应在600℃时,失重率约为75%,复配阻燃剂试样与不添加阻燃剂的样品相较热稳定性更佳,阻燃性能显著增加。  相似文献   

7.
以可膨胀石墨(EG)为物理膨胀体系,制备了膨胀型水性饰面防火涂料,采用小室法、锥形量热仪(CONE)、扫描电镜(SEM)等手段分析了可膨胀石墨及其与阻燃协效剂复配对饰面膨胀型防火涂料性能的影响。研究发现,EG的加入改善了膨胀炭质层的结构,大大提高了涂料的防火性能。选用3.5g、80目的EG,所得涂料的防火性能最佳,耐火时间达33min。可膨胀石墨与阻燃协效剂复配能够进一步降低涂料燃烧的烟气释放。当EG与二氧化锡按质量比为1∶1复配,所得涂层的生烟速率峰值与仅含EG的涂层相比下降78.4%,抑烟性能最好。  相似文献   

8.
不同粒径EG阻燃ABS体系燃烧性能和阻燃机理   总被引:1,自引:0,他引:1  
采用不同粒径可膨胀石墨(EG)作为阻燃剂,添加量为20%,制备了阻燃ABS;研究EG粒径对ABS燃烧性能的影响,并通过CONE、TG对阻燃机理进行研究.结果表明:EG对ABS具有很好的阻燃作用,EG粒径越大.膨胀体积(EV)越大,阻燃效果越好,EG粒径大于48μm时就可有效抑制火焰传播;EG膨胀炭层具有良好耐热性,可保护ABS成炭产物,增加ABS成炭量,EG阻燃ABS具有典型的凝聚相阻燃特征.  相似文献   

9.
膨胀石墨在聚乙烯中阻燃协效作用的研究   总被引:8,自引:0,他引:8  
以膨胀石墨(EG)与聚磷酸铵(APP)复配组成膨胀型阻燃剂,应用于高密度聚乙烯(PE-HD)中。热分析表明APP/FG的添加使得PE-HD材料的热稳定性增强,降解过程变缓,剩炭率增加。氧指数(LOI)结果表明APP/EG具有良好的阻燃协同作用。扫描电镜(SEM)显示APP/EG的加入可使得PE-HD样品生成连续致密的炭层。同时力学性能研究表明APP/EG对材料的力学性能的影响比其它膨胀型阻燃剂要小。  相似文献   

10.
《塑料科技》2016,(10):66-70
将可膨胀石墨(EG)与聚磷酸铵(APP)复配并添加至聚苯乙烯(PS)基体中,制备了PS/EG/APP阻燃复合材料。通过极限氧指数(LOI)、水平垂直燃烧(UL 94)测试,以及热重分析(TG)和扫描电镜分析(SEM)对PS/EG/APP阻燃复合材料的阻燃性能和热稳定性进行了检测,并优化了该材料配方。结果表明:复合阻燃剂EG/APP的加入,使得体系的LOI值与热稳定性均明显提高。其中当复合阻燃剂EG/APP的添加量为30 phr,且质量比为3:1时,阻燃体系的LOI值可达到31.8%,而单独添加同量EG或APP的阻燃体系,其LOI值仅为29%和20.8%,这说明EG与APP之间存在协同效应。  相似文献   

11.
将有机蒙脱土(OMMT)和水滑石(LDH)分别与膨胀阻燃剂(IFR)构成阻燃体系,对长玻纤增强聚丙烯(LGFPP)复合材料进行阻燃改性,通过极限氧指数(LOI)和锥形量热仪(CONE)测试,对比研究了两种体系阻燃LGFPP的阻燃性能及阻燃机理。结果表明:当OMMT质量分数为2%时,复合材料的LOI达到最大值24.2%,且垂直燃烧达到了UL-94 V-0级;当LDH质量分数为1%时,LOI达到最大值23.3%,而垂直燃烧等级仍为V-1级。以炭层阻隔的IFR/OMMT体系比以稀释阻燃的IFR/LDH体系更加有效地改善LGFPP的阻燃性能。  相似文献   

12.
研究了季戊四醇磷酸酯三聚氰胺盐微胶囊化的多聚磷酸铵(KDIFR)、三聚氰胺-甲醛树脂微胶囊化的多聚磷酸铵(MAPP)和多聚磷酸铵(APP) 3种膨胀型阻燃剂,及引入硼、铝元素对膨胀型阻燃环氧树脂(EP)阻燃性能的影响,采用极限氧指数法和水平燃烧法测试材料的燃烧性能。结果表明,3种阻燃剂中APP的阻燃效果最好,当APP/EP为0.3(质量比,下同)时,其极限氧指数为32.2 %,达到难燃级水平;在EP/APP中引入铝元素或硼元素可使阻燃效果提高,硼、铝共存时阻燃效果更加突出,加入APP总量0.8 %的硼酸铝可使EP/APP的自熄时间由48 s降为24 s;热分析结果表明,APP热分解吸热恰与EP的热降解产物燃烧放热相匹配,这是使EP/APP的阻燃性能提高的主要原因;在EP/APP中引入硼和铝元素可明显促进EP/APP成炭,起到协同阻燃作用。  相似文献   

13.
利用含磷三嗪环低聚物(PMPT)及其复合阻燃剂制备阻燃聚丙烯(PP),探讨了PMPT和多聚磷酸胺/季戊四醇(APP/PER)/PMPT的用量对阻燃PP极限氧指数、燃烧参数的影响,并用扫描电子显微镜观察了剩余炭层的微观形貌,推测了阻燃剂PMPT的阻燃机理.结果表明,随着阻燃剂PMPT用量的增加,阻燃PP的氧指数逐渐增大;APP,PER,PMPT三者有很好的协同阻燃作用;PMPT阻燃机理遵循凝聚相阻燃机理.  相似文献   

14.
陈先敏 《塑料工业》2014,42(9):109-112
研究了不同配比的红磷阻燃母料(RPM)与氢氧化镁(MH)协同阻燃高抗冲聚苯乙烯(HIPS)体系的阻燃性能和机械性能。并选取最佳红磷阻燃母料与氢氧化镁的配比,再分别与其他无卤阻燃剂如酚醛树脂、氧化锌、氰尿酸三聚氰胺盐、有机纳米蒙脱土复配来共同阻燃HIPS,并分别对其体系的机械性能和阻燃性能进行了研究。结果表明,在RPM/MH质量比为1,总质量分数为30%时,与7%的酚醛树脂或有机纳米蒙脱土复配,都可以使阻燃HIPS材料达到1.6 mm UL94的V-1级。  相似文献   

15.
膨胀型阻燃体系阻燃LDPE性能的研究   总被引:2,自引:1,他引:1  
比较了Ⅰ型聚磷酸铵(n>30)和Ⅱ型聚磷酸铵(n>1000)的基本性质及其阻燃低密度聚乙烯复合材料的力学性能和阻燃性能,研究表明:聚磷酸铵(APP)提高了复合材料的氧指数LOI,延缓复合材料的分解,但会造成复合材料力学性能的下降,这一点不因APP种类而改变。然而,聚磷酸铵的表面改性会改善APP在LDPE中的分散,提高二者的相容性,有利于复合材料力学性能的提高。  相似文献   

16.
分别选用溴化齐聚物、磺酸盐、聚硅氧烷混合物和磷酸酯阻燃剂对聚碳酸酯(PC)进行阻燃改性,研究了阻燃剂类型对PC阻燃性能的影响,同时探讨了试样厚度对阻燃性能测试结果的影响。结果表明,溴化齐聚物提升了PC的灼热丝起燃温度(GWIT),磺酸盐、聚硅氧烷混合物和磷酸酯降低了PC的GWIT;成炭对起燃的影响远小于热分解,决定GWIT高低的因素是热分解温度,热分解温度越高,GWIT越高。磺酸盐分解的SO2促使PC交联形成的产物为层碳或石墨化结构,不仅隔热、隔氧、阻止气体流通,还具有导电性,是真炭层,磺酸盐阻燃改性PC的相比电痕化指数由纯PC的175 V降低至150 V;聚硅氧烷混合物、磷酸酯及其分解物形成的“炭层”仅具有类似炭层的作用,无导电性,对PC的电痕化性能无影响。添加四种阻燃剂后PC的灼热丝可燃性指数、垂直燃烧等级均有不同程度的提升,针焰试验结果变好。随着试样厚度增加,溴化齐聚物阻燃PC的GWIT升高,磺酸盐和磷酸酯阻燃PC的GWIT降低,聚硅氧烷混合物阻燃PC的GWIT无明显变化。随着试样厚度增加,四种阻燃剂阻燃PC的其它阻燃性能整体变好,但磷酸酯阻燃PC的垂直燃烧等级仍为V–1级。  相似文献   

17.
低卤阻燃高密度聚乙烯的阻燃性能研究   总被引:4,自引:0,他引:4  
采用热分析方法对低卤阻燃高密度聚乙烯(HDPE)的阻燃性能进行了具体分析。详细讨论了氢氧化镁、红磷、硼酸锌、溴锑阻燃剂及其复合体系对HDPE阻燃性能的影响,确定了合适的复合阻燃体系  相似文献   

18.
采用一种新型含磷硅高分子阻燃剂(EMPZR)与聚磷酸铵(APP)、多聚磷酸密胺(MPP)复配成膨胀型阻燃剂(IFR),并对聚丙烯(PP)进行阻燃。当APP/MPP/EMPZR质量比为15/10/15时,所制得的复合材料的氧指数达到33.0 %,垂直燃烧达到UL 94 V 0级;与纯PP相比,拉伸强度、弯曲强度和冲击强度都没有下降;热失重分析表明,阻燃PP材料在600 ℃时的残炭量为21.14 %,成炭率显著提高;扫描电镜对残炭形貌的表征以及氧指数测试前后阻燃PP材料的红外图谱分析证实了EMPZR与APP、MPP在PP中有良好的协效阻燃作用。  相似文献   

19.
氯溴代烷基磷酸酯阻燃剂的合成与阻燃性研究   总被引:1,自引:0,他引:1  
本文对新戊二醇、溴素、三氯氧磷和环氧乙烷等为原料合成了氯溴代烷基磷酸酯阻燃剂-3-溴-2,2-二甲基丙基-2-溴乙基-2-氯乙基磷酸酯(CBAP-912),探索了温度、时间、原料配比,催化剂用量等反应条件对产率的影响。用化学方法,FTIR、TG等方法对该合成产物的性能和结构进行了表征。并研究了该阻燃剂在不饱和聚酯树脂和聚氯乙烯中的阻燃性,结果表明其上有良好的阻燃性能。  相似文献   

20.
新型磷氮阻燃剂对尼龙6的阻燃作用   总被引:2,自引:0,他引:2  
研究了一种基于烷基次磷酸铝的新型磷氮阻燃剂(OP)对尼龙6(PA6)的阻燃作用。试验结果表明:该阻燃剂对PA6具有良好的阻燃作用,当其添加质量分数为25%时,PA6的氧指数(LOI)大于30%,阻燃级别达到FV-0级,燃烧时材料的热释放速率、质量损失速率和总热释放量明显降低。热重分析结果表明:OP改变了PA6的热降解过程,使之成炭化学反应提前,形成的炭层通过隔热和隔氧而产生阻燃作用。添加OP对材料的机械性能有些影响,如弯曲强度和弯曲模量有所增加,而拉伸强度和冲击功有所下降,但影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号