首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
钟建冬  苏剑波 《控制与决策》2010,25(12):1831-1836
针对机器人工作空间中存在狭窄通道时,基于概率路标图的路径规划法不能有效提高狭窄通道中路标分布的合理性,研究一种基于狭窄通道辨识的混合路标规划法的混合路标采集策略,利用星形试验法辨识出狭窄通道形状,增加狭窄通道中的路标密度,使全局路标分布合理化,提高了路径规划的效率.二维和三维配置空间中的仿真实验验证了该算法的有效性.  相似文献   

2.
We present a new approach to path planning for deformable linear (one-dimensional) objects such as flexible wires. We introduce a method for efficiently computing stable configurations of a wire subject to manipulation constraints. These configurations correspond to minimal-energy curves. By restricting the planner to minimal-energy curves, the execution of a path becomes easier. Our curve representation is adaptive in the sense that the number of parameters automatically varies with the complexity of the underlying curve. We introduce a planner that computes paths from one minimal-energy curve to another such that all intermediate curves are also minimal-energy curves. This planner can be used as a powerful local planner in a sampling-based roadmap method. This makes it possible to compute a roadmap of the entire "shape space," which is not possible with previous approaches. Using a simplified model for obstacles, we can find minimal-energy curves of fixed length that pass through specified tangents at given control points. Our work has applications in cable routing, and motion planning for surgical suturing and snake-like robots.  相似文献   

3.
This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration space surrounding existing nodes in the roadmap and uses a combination of random and deterministic search methods that emulate the behaviour of octopus limbs. The strategy consists of randomly mutating the states of the links near the end-effector, and mutating the states of the links near the base of the robot toward the states of the goal configuration. When combined with the small tree probabilistic roadmap planner, the method was successfully used to solve the narrow passage motion planning problem of a 17 degree-of-freedom manipulator.  相似文献   

4.
《Advanced Robotics》2013,27(8-9):989-1012
Abstract

This paper proposes a method to efficiently abstract the traversable regions of a bounded two-dimensional environment using the probabilistic roadmap (PRM) to plan the path for a mobile robot. The proposed method uses centroidal Voronoi tessellation to autonomously rearrange the positions of initially randomly generated nodes. The PRM using the rearranged nodes covers most of the traversable regions in the environment and regularly divides them. The rearranged roadmap reduces the search space of a graph search algorithm and helps to promptly answer arbitrary queries in the environment. The mobile robot path planner using the proposed rearranged roadmap was integrated with a local planner that considers the kinematic properties of a mobile robot, and the efficiency and the safety of the paths were verified by simulation.  相似文献   

5.
Sampling-Based Roadmap of Trees for Parallel Motion Planning   总被引:1,自引:0,他引:1  
This paper shows how to effectively combine a sampling-based method primarily designed for multiple-query motion planning [probabilistic roadmap method (PRM)] with sampling-based tree methods primarily designed for single-query motion planning (expansive space trees, rapidly exploring random trees, and others) in a novel planning framework that can be efficiently parallelized. Our planner not only achieves a smooth spectrum between multiple-query and single-query planning, but it combines advantages of both. We present experiments which show that our planner is capable of solving problems that cannot be addressed efficiently with PRM or single-query planners. A key advantage of our planner is that it is significantly more decoupled than PRM and sampling-based tree planners. Exploiting this property, we designed and implemented a parallel version of our planner. Our experiments show that our planner distributes well and can easily solve high-dimensional problems that exhaust resources available to single machines and cannot be addressed with existing planners.  相似文献   

6.
In this paper, we investigate methods for enabling a human operator and an automatic motion planner to cooperatively solve a motion planning query. Our work is motivated by our experience that automatic motion planners sometimes fail due to the difficulty of discovering critical configurations of the robot that are often naturally apparent to a human observer.Our goal is to develop techniques by which the automatic planner can utilize (easily generated) user-input, and determine natural ways to inform the user of the progress made by the motion planner. We show that simple randomized techniques inspired by probabilistic roadmap methods are quite useful for transforming approximate, user-generated paths into collision-free paths, and describe an iterative transformation method which enables one to transform a solution for an easier version of the problem into a solution for the original problem. We also illustrate that simple visualization techniques can provide meaningful representations of the planner's progress in a 6-dimensional C-space. We illustrate the utility of our methods on difficult problems involving complex 3D CAD Models.  相似文献   

7.
《Advanced Robotics》2013,27(7):943-962
Although Rapidly-exploring Random Trees (RRTs) have been successfully applied in path planning of robots with many degrees of freedom under non-holonomic and differential constraints, rapidly identifying and passing through narrow passages in a robot's configuration space remains a challenge for RRTs-based planners. This paper presents a novel two-stage approach to address the problem of multi-d.o.f. robot path planning in high-dimensional configuration space with narrow corridors. The first stage introduces an efficient sampling algorithm called Bridge Test to find a global roadmap that identifies the critical region. The second stage presents two varieties of RRTs, called Triple-RRTs, to search for a local connection under the guidance of the global landmark. The two-stage strategy keeps a fine balance between global heuristics and local connection, resulting in high performance over the previous RRTs-based path planning methods. We have implemented the Triple-RRTs planners for both rigid and articulated robots in two- and three-dimensional environments. Experimental results demonstrate the effectiveness of the proposed method.  相似文献   

8.
UAV online path-planning in a low altitude dangerous environment with dense obstacles, static threats (STs) and dynamic threats (DTs), is a complicated, dynamic, uncertain and real-time problem. We propose a novel method to solve the problem to get a feasible and safe path. Firstly STs are modeled based on intuitionistic fuzzy set (IFS) to express the uncertainties in STs. The methods for ST assessment and synthesizing are presented. A reachability set (RS) estimator of DT is developed based on rapidly-exploring random tree (RRT) to predict the threat of DT. Secondly a subgoal selector is proposed and integrated into the planning system to decrease the cost of planning, accelerate the path searching and reduce threats on a path. Receding horizon (RH) is introduced to solve the online path planning problem in a dynamic and partially unknown environment. A local path planner is constructed by improving dynamic domain rapidly-exploring random tree (DDRRT) to deal with complex obstacles. RRT* is embedded into the planner to optimize paths. The results of Monte Carlo simulation comparing the traditional methods prove that our algorithm behaves well on online path planning with high successful penetration probability.   相似文献   

9.
Narrow passage sampling for probabilistic roadmap planning   总被引:1,自引:0,他引:1  
Probabilistic roadmap (PRM) planners have been successful in path planning of robots with many degrees of freedom, but sampling narrow passages in a robot's configuration space remains a challenge for PRM planners. This paper presents a hybrid sampling strategy in the PRM framework for finding paths through narrow passages. A key ingredient of the new strategy is the bridge test, which reduces sample density in many unimportant parts of a configuration space, resulting in increased sample density in narrow passages. The bridge test can be implemented efficiently in high-dimensional configuration spaces using only simple tests of local geometry. The strengths of the bridge test and uniform sampling complement each other naturally. The two sampling strategies are combined to construct the hybrid sampling strategy for our planner. We implemented the planner and tested it on rigid and articulated robots in 2-D and 3-D environments. Experiments show that the hybrid sampling strategy enables relatively small roadmaps to reliably capture the connectivity of configuration spaces with difficult narrow passages.  相似文献   

10.
《Advanced Robotics》2013,27(1-2):51-63
Path planning using conventional roadmaps, such as visibility graphs, probability roadmaps and skeleton maps, may have some disadvantages of long length, sharp turns or collisions with obstacles. Specifically, the paths using the conventional skeleton map have unnecessary turns around crossing points, which make longer paths and prevent the robot from moving smoothly. To improve the skeleton map, this paper proposes a new roadmap construction algorithm for path planning of a mobile robot using skeleton maps. The proposed algorithm alleviates the problems of the conventional algorithms by constructing roadmaps which consist of polygons around the crossing points. Simulation results show the efficiency of the proposed algorithm by comparing the results with those obtained using the conventional algorithm.  相似文献   

11.
In this paper, we examine how a path planning problem can be solved in changing environments using probabilistic roadmap planners. A probabilistic roadmap is built in static environment where all obstacles are known in advance, but we show that a roadmap can be built in such a way that it works well even when new obstacles are added to the workspace. However, our experiments show that the roadmap graph must be built carefully. We compare three different methods that are used to decide which edges are added to the roadmap graph to connect the nodes. One of these is a distance‐based method, which we present in this paper. In the tests, we built a roadmap by using only the static obstacles. Then, we added additional obstacles to the environment and tested how well the roadmap still worked. The tests showed that our distance‐based method worked quickly and that it produced roadmaps, which could be used to find a path amid additional obstacles with a high success rate.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A classifier ensemble is a set of classifiers whose individual decisions are combined to classify new examples. Classifiers, which can represent complex decision boundaries are accurate. Kernel functions can also represent complex decision boundaries. In this paper, we study the usefulness of kernel features for decision tree ensembles as they can improve the representational power of individual classifiers. We first propose decision tree ensembles based on kernel features and found that the performance of these ensembles is strongly dependent on the kernel parameters; the selected kernel and the dimension of the kernel feature space. To overcome this problem, we present another approach to create ensembles that combines the existing ensemble methods with the kernel machine philosophy. In this approach, kernel features are created and concatenated with the original features. The classifiers of an ensemble are trained on these extended feature spaces. Experimental results suggest that the approach is quite robust to the selection of parameters. Experiments also show that different ensemble methods (Random Subspace, Bagging, Adaboost.M1 and Random Forests) can be improved by using this approach.  相似文献   

13.
《Advanced Robotics》2013,27(6):477-493
This paper presents a variant of probabilistic roadmap methods (PRM) that recently appeared as a promising approach to motion planning. We exploit a free-space structuring of the configuration space into visibility domains in order to produce small roadmaps, called visibility roadmaps. Our algorithm integrates an original termination condition related to the volume of the free space covered by the roadmap. The planner has been implemented within a software platform allowing us to address a large class of mechanical systems. Experiments show the efficiency of the approach, in particular for capturing narrow passages of collision-free configuration spaces.  相似文献   

14.
A new probabilistic roadmap method is presented for planning the path of a robotic sensor deployed in order to classify multiple fixed targets located in an obstacle-populated workspace. Existing roadmap methods have been successful at planning a robot path for the purpose of moving from an initial to a final configuration in a workspace by a minimum distance. But they are not directly applicable to robots whose primary objective is to gather target information with an on-board sensor. In this paper, a novel information roadmap method is developed in which obstacles, targets, sensor’s platform and field-of-view are represented as closed and bounded subsets of an Euclidean workspace. The information roadmap is sampled from a normalized information theoretic function that favors samples with a high expected value of information in configuration space. The method is applied to a landmine classification problem to plan the path of a robotic ground-penetrating radar, based on prior remote measurements and other geospatial data. Experiments show that paths obtained from the information roadmap exhibit a classification efficiency several times higher than that of existing search strategies. Also, the information roadmap can be used to deploy non-overpass capable robots that must avoid targets as well as obstacles.  相似文献   

15.
In the last decades, a large variety of robot motion planners emerged. However, manoeuvring in very narrow environments, e.g., for common parking scenarios, cannot be reliably handled with existing path planners at low computing costs. This is why, this paper presents a fast optimisation based path planner which specialises on narrow environments. In the proposed approach, the kinematic differential equations are discretised. For the resulting discrete path segments, a static optimisation problem is formulated to determine the path independently of the considered scenario. In each iteration step, the path length is also optimised to handle close distances to the obstacles as well as longer driving distances. Due to the local nature heuristic rules for driving direction changes are formulated which intend to imitate the behaviour of a human driver. The drawback of the local nature is the lack of global information to handle scenarios with obstacles blocking the path. To overcome this problem, a tree-based guidance for the local planner is introduced. The landmarks for the tree are implicitly created by the local planner allowing an efficient exploration of the free configuration space. The performance of the algorithm is evaluated utilising Monte-Carlo simulations and compared to state-of-the-art path planning algorithms.  相似文献   

16.
Path planning for unmanned aircraft has attracted a remarkable amount of interest from the research community. However, planning in large environments such as the civil airspace has not been addressed extensively. In this paper we apply a heuristic incremental interpolation-based search algorithm with efficient replanning capabilities to the path planning problem for a fixed-wing aircraft operating in a natural environment to plan and re-plan long flight paths. We modified the algorithm to account for the minimum turning radius and the limited flight path angles of a fixed-wing aircraft. Additionally, we present a method to consider a desired minimum cruising altitude and a post-processing algorithm to improve the path and remove unnecessary path points. These properties specific to aircraft operation could not be addressed with the original algorithm. Simulation results show that the planner produces intuitive, short paths and is capable of exploiting previous planning efforts, when unknown obstacles are encountered.  相似文献   

17.
This paper presents a method for improving the quality of the initial path produced by the probabilistic roadmap (PRM)-based mobile robot path planner. The sampling-based retraction method modifies the initial path to achieve approximate maximum safety by removing unsafe and redundant sections. The updated directions and distances of the waypoints on the initial path are determined by approximately modeling clearances around the initial paths using random samples. The proposed method can control the update speed to induce smooth convergence. The performance of the proposed method was verified by simulation.  相似文献   

18.
We investigate how we can construct small probabilistic roadmaps in a reasonable time while still keeping a good coverage and connectivity. We propose a new neighborhood-based method that can reduce the size of the roadmaps by filtering out unnecessary nodes. We then experimentally test it against a basic probabilistic roadmap planner and a visibility-based planner. We use both a uniform sampling and a bridge test sampling in our tests. The results show that the neighborhood-based method can reduce the number of nodes considerably. The neighborhood-based method is simple to implement, it works well with a uniform sampling, and it does not need any additional parameters when compared with the basic planner.  相似文献   

19.
As an important class of sampling-based path planning methods, the Rapidly-exploring Random Trees (RRT) algorithm has been widely studied and applied in the literature. In RRT, how to select a tree to extend or connect is a critical factor, which will greatly influence the efficiency of path planning. In this paper, a novel learning-based multi-RRTs (LM-RRT) approach is proposed for robot path planning in narrow passages. The LM-RRT approach models the tree selection process as a multi-armed bandit problem and uses a reinforcement learning algorithm that learns action values and selects actions with an improved ε-greedy strategy (ε t -greedy). Compared with previous RRT algorithms, LM-RRT can not only enhance the local space exploration ability of each tree, but also guarantee the efficiency of global path planning. The probabilistic completeness and combinatory optimality of LM-RRT are proved based on the geometric characteristics of the configuration space. Simulation and experimental results show the effectiveness of the proposed LM-RRT approach in single-query path planning problems with narrow passages.  相似文献   

20.
This paper presents a hierarchical strategy for field mobile robots that incorporates path planning at different ranges. At the top layer is a global path planner that utilizes gross terrain characteristics, such as hills and valleys, to determine globally safe paths through the rough terrain. This information is then passed via waypoints to a regional layer that plans appropriate navigation paths using regional terrain characteristics. The global and regional path planners share the same map information, but at different ranges. The motion recommendations from the regional layer are then combined with those of the reactive navigation layer to provide reactive control for the mobile robot. Details of the global and regional path planners are discussed, and simulation and experimental results are presented. © 2005 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号