首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motion recognition is a topic in software engineering and dialect innovation with a goal of interpreting human signals through mathematical algorithm. Hand gesture is a strategy for nonverbal communication for individuals as it expresses more liberally than body parts. Hand gesture acknowledgment has more prominent significance in planning a proficient human computer interaction framework, utilizing signals as a characteristic interface favorable to circumstance of movements. Regardless, the distinguishing proof and acknowledgment of posture, gait, proxemics and human behaviors is furthermore the subject of motion to appreciate human nonverbal communication, thus building a richer bridge between machines and humans than primitive text user interfaces or even graphical user interfaces, which still limits the majority of input to electronics gadget. In this paper, a study on various motion recognition methodologies is given specific accentuation on available motions. A survey on hand posture and gesture is clarified with a detailed comparative analysis of hidden Markov model approach with other classifier techniques. Difficulties and future investigation bearing are also examined.  相似文献   

2.
Multimedia Tools and Applications - Hand Gestures Recognition (HGR) is one of the main areas of research for Human Computer Interaction applications. Most existing approaches are based on local or...  相似文献   

3.
目的 手势识别是人机交互领域的热点问题。针对传统手势识别方法在复杂背景下识别率低,以及现有基于深度学习的手势识别方法检测时间长等问题,提出了一种基于改进TinyYOLOv3算法的手势识别方法。方法 对TinyYOLOv3主干网络重新进行设计,增加网络层数,从而确保网络提取到更丰富的语义信息。使用深度可分离卷积代替传统卷积,并对不同网络层的特征进行融合,在保证识别准确率的同时,减小网络模型的大小。采用CIoU(complete intersection over union)损失对原始的边界框坐标预测损失进行改进,将通道注意力模块融合到特征提取网络中,提高了定位精度和识别准确率。使用数据增强方法避免训练过拟合,并通过超参数优化和先验框聚类等方法加快网络收敛速度。结果 改进后的网络识别准确率达到99.1%,网络模型大小为27.6 MB,相比原网络(TinyYOLOv3)准确率提升了8.5%,网络模型降低了5.6 MB,相比于YOLO(you only look once)v3和SSD(single shot multibox detector)300算法,准确率略有降低,但网络模型分别减小到原来的1/8和1/3左右,相比于YOLO-lite和MobileNet-SSD等轻量级网络,准确率分别提升61.12%和3.11%。同时在自制的复杂背景下的手势数据集对改进后的网络模型进行验证,准确率达到97.3%,充分证明了本文算法的可行性。结论 本文提出的改进Tiny-YOLOv3手势识别方法,对于复杂背景下的手势具有较高的识别准确率,同时在检测速度和模型大小方面都优于其他算法,可以较好地满足在嵌入式设备中的使用要求。  相似文献   

4.
为了使人机交互变得更加自然,提出利用Kinect体感器获取手势深度图像;利用变形雅可比-傅里叶矩对手势图像进行特征提取;利用最小欧氏距离分类器进行建模、分类,实现手势识别.用Kinect体感器获取手部深度数据流,深度数据结合阈值分割法,可以有效地实现手势的分割.变形雅可比-傅里叶矩是一种不变矩,不变矩具有灰度、平移、旋转和尺度不变性,适合用于多畸变不变图像的特征提取.实验对5种手势进行了测试,平均识别率为95.2%,实验结果表明:该方法具有较高的识别率.  相似文献   

5.
为了使手势识别在更多的领域得到推广及应用,提出了基于Leap Motion体感设备实时跟踪技术获取手势三维空间坐标信息的方法,并从中分别提取角度信息和相对坐标信息,构建手势特征数据,建立手势识别模型.对特征数据进行归一化处理后,利用支持向量机(SVM)分类器进行训练、建模和分类,实现手势识别.实验结果表明:以角度数据和坐标数据作为手势特征的方法可行,平均识别率分别为96.6%和91.8%.通过对比可以得出:以角度数据作为特征值具有较高的准确性和鲁棒性,并避免了单纯依照一种特征值产生的局限性.  相似文献   

6.
基于视觉的手势识别中,手势的识别效果易受手势旋转,光照亮度的影响,针对该问题,借鉴了目标识别和图像检索领域的Bag of Features(特征袋)算法,将Bag of Features算法应用到手势识别领域.通过SURF(加速鲁棒性特征)算法提取手势图像的特征描述符,使手势对尺度、旋转、光照具有很强的适应力,再应用Bag of Features算法把SURF特征描述符映射到一个统一维度的向量,即Bag of Features特征向量,再用支持向量机对图像得到的特征向量进行训练分类.实验结果表示,该方法不仅具有较高的时间效率,满足手势识别的实时性,而且即使在很大角度的旋转以及亮度的变化下,仍能达到较高的识别率.  相似文献   

7.
In this paper, we propose a new method for recognizing hand gestures in a continuous video stream using a dynamic Bayesian network or DBN model. The proposed method of DBN-based inference is preceded by steps of skin extraction and modelling, and motion tracking. Then we develop a gesture model for one- or two-hand gestures. They are used to define a cyclic gesture network for modeling continuous gesture stream. We have also developed a DP-based real-time decoding algorithm for continuous gesture recognition. In our experiments with 10 isolated gestures, we obtained a recognition rate upwards of 99.59% with cross validation. In the case of recognizing continuous stream of gestures, it recorded 84% with the precision of 80.77% for the spotted gestures. The proposed DBN-based hand gesture model and the design of a gesture network model are believed to have a strong potential for successful applications to other related problems such as sign language recognition although it is a bit more complicated requiring analysis of hand shapes.  相似文献   

8.
With the development of multimedia technology, traditional interactive tools, such as mouse and keyboard, cannot satisfy users’ requirements. Touchless interaction has received considerable attention in recent years with benefit of removing barriers of physical contact. Leap Motion is an interactive device which can be used to collect information of dynamic hand gestures, including coordinate, acceleration and direction of fingers. The aim of this study is to develop a new method for hand gesture recognition using jointly calibrated Leap Motion via deterministic learning. Hand gesture features representing hand motion dynamics, including spatial position and direction of fingers, are derived from Leap Motion. Hand motion dynamics underlying motion patterns of different gestures which represent Arabic numbers (0-9) and capital English alphabets (A-Z) are modeled by constant radial basis function (RBF) neural networks. Then, a bank of estimators is constructed by the constant RBF networks. By comparing the set of estimators with a test gesture pattern, a set of recognition errors are generated. The average L1 norms of the errors are taken as the recognition measure according to the smallest error principle. Finally, experiments are carried out to demonstrate the high recognition performance of the proposed method. By using the 2-fold, 10-fold and leave-one-person-out cross-validation styles, the correct recognition rates for the Arabic numbers are reported to be 94.2%, 95.1% and 90.2%, respectively, for the English alphabets are reported to be 89.2%, 92.9% and 86.4%, respectively.  相似文献   

9.
《微型机与应用》2017,(22):58-61
针对光照变化、背景噪声等复杂环境对手势识别的影响,提出了一种基于YCb Cr空间肤色分割去除背景结合卷积神经网络进行手势识别方法。首先根据人体肤色在YCb Cr颜色空间中的聚类效果,采用基于椭圆模型的肤色检测方法进行手势分割;然后对分割后的手势图像提取骨架与边缘相融合的手势特征图;再通过深层次的Alex Net卷积神经网络结构,对经过融合的手势特征图进行识别。实验结果表明,针对复杂的背景环境,该算法具有较强的鲁棒性,在不同数据集下对手势的平均识别率提升了4%,可以达到99.93%。  相似文献   

10.
基于手势识别的人机交互发展研究   总被引:1,自引:1,他引:1  
近年来手势识别技术的快速发展,基于手势识别技术的人机交互应用系统的建立使得人机交互的发展前景广阔.从手形、手势和手形手势的建模出发,介绍了模板匹配、特征提取、神经网络和隐马尔可夫模型4种手势识别的方法,并且综述了基于手势识别技术人机交互的发展,详细介绍了3类人机交互系统:漫游型系统、编辑型系统和操作型系统.  相似文献   

11.
12.
A new method for hand gesture recognition that is based on a hand gesture fitting procedure via a new Self-Growing and Self-Organized Neural Gas (SGONG) network is proposed. Initially, the region of the hand is detected by applying a color segmentation technique based on a skin color filtering procedure in the YCbCr color space. Then, the SGONG network is applied on the hand area so as to approach its shape. Based on the output grid of neurons produced by the neural network, palm morphologic characteristics are extracted. These characteristics, in accordance with powerful finger features, allow the identification of the raised fingers. Finally, the hand gesture recognition is accomplished through a likelihood-based classification technique. The proposed system has been extensively tested with success.  相似文献   

13.
14.
15.
Sign and gesture recognition offers a natural way for human–computer interaction. This paper presents a real time sign recognition architecture including both gesture and movement recognition. Among the different technologies available for sign recognition data gloves and accelerometers were chosen for the purposes of this research. Due to the real time nature of the problem, the proposed approach works in two different tiers, the segmentation tier and the classification tier. In the first stage the glove and accelerometer signals are processed for segmentation purposes, separating the different signs performed by the system user. In the second stage the values received from the segmentation tier are classified. In an effort to emphasize the real use of the architecture, this approach deals specially with problems like sensor noise and simplification of the training phase.  相似文献   

16.
针对复杂背景下的手势识别容易受到环境干扰造成的识别困难问题,通过分析手势的表观特征,提出并实现了一种可用于自然人机交互的手势识别算法。该算法基于Kinect深度图像实现手势区域分割,然后提取手势手指弧度、指间弧度、手指数目等具有旋转缩放不变性的表观特征,运用最小距离法实现快速分类。并将该算法成功运用于实验室三指灵巧手平台,达到了理想的控制效果。实验表明该算法具有良好的鲁棒性,针对九种常用手势,平均识别率达到94.3%。  相似文献   

17.
基于特征包支持向量机的手势识别   总被引:3,自引:0,他引:3  
针对类肤色信息或复杂背景的影响,难以通过手势分割得到精确手势轮廓而对后期手势识别率与实时交互的影响,提出了一种基于特征包支持向量机(BOF-SVM)的手势识别方法。采用SIFT算法提取手势图像局部不变性特征点,将手势局部特征向量(尺度不变特征变换(SIFT)描述子)进行K-means聚类生成视觉码书,并通过视觉码书量化每一幅手势图像的视觉码字集合,以此获得手势图像的固定维数的表征向量来训练支持向量机(SVM)多类分类器。该方法只需框定手势所在区域,无需精确地分割人手。实验表明,该方法对9种交互手势的平均识别率达到92.1%,并具有很好的鲁棒性及实时性,能适应环境的变化。  相似文献   

18.
In this paper, we present a novel approach of recognizing hand number gestures using the recognized hand parts in a depth image. Our proposed approach is divided into two stages: (i) hand parts recognition by random forests (RFs) and (ii) rule-based hand number gestures recognition. In the first stage, we create a database (DB) of synthetic hand depth silhouettes and their corresponding hand parts-labeled maps and then train RFs with the DB. Via the trained RFs, we recognize or label the hand parts in a depth silhouette. In the second stage, based on the information of the recognized or labeled hand parts, hand number gestures are recognized according to our derived rules. In our experiments, we quantitatively and qualitatively evaluated our hand parts recognition system with synthetic and real data. Then, we tested our hand number gesture recognition system with real data. Our results show the average recognition rate of 97.80 % over the ten hand number gestures from five different subjects.  相似文献   

19.
提出了一种新的手势识别方法,该方法从深度图像中提取手形轮廓,通过计算手形轮廓与轮廓形心点的距离,使用离散傅里叶变换获得手势的表观特征,引入径向基核的支持向量机识别手势。建立了一个常见的10种手势的数据集,测试获得了97.9%的识别率。  相似文献   

20.

New interaction paradigms combined with emerging technologies have produced the creation of diverse Natural User Interface (NUI) devices in the market. These devices enable the recognition of body gestures allowing users to interact with applications in a more direct, expressive, and intuitive way. In particular, the Leap Motion Controller (LMC) device has been receiving plenty of attention from NUI application developers because it allows them to address limitations on gestures made with hands. Although this device is able to recognize the position of several parts of the hands, developers are still left with the difficult task of recognizing gestures. For this reason, several authors approached this problem using machine learning techniques. We propose a classifier based on Approximate String Matching (ASM). In short, we encode the trajectories of the hand joints as character sequences using the K-means algorithm and then we analyze these sequences with ASM. It should be noted that, when using the K-means algorithm, we select the number of clusters for each part of the hands by considering the Silhouette Coefficient. Furthermore, we define other important factors to take into account for improving the recognition accuracy. For the experiments, we generated a balanced dataset including different types of gestures and afterwards we performed a cross-validation scheme. Experimental results showed the robustness of the approach in terms of recognizing different types of gestures, time spent, and allocated memory. Besides, our approach achieved higher performance rates than well-known algorithms proposed in the current state-of-art for gesture recognition.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号