首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.

This paper investigates the observer-based adaptive finite-time neural control issue of stochastic non-strict-feedback nonlinear systems. By establishing a state observer and utilizing the approximation property of the neural network, an adaptive neural network output-feedback controller is constructed. The controller solves the issue that the states of stochastic nonlinear system cannot be measured, and assures that all signals in the closed-loop system are bounded. Different from the existing adaptive control researches of stochastic nonlinear systems with unmeasured states, the proposed control scheme can guarantee the finite-time stability of the stochastic nonlinear systems. Furthermore, the effectiveness of the proposed control approach is verified by the simulation results.

  相似文献   

2.
A novel adaptive predefined-time tracking control algorithm is proposed for the Euler–Lagrange systems (ELSs) with model uncertainties and actuator faults. Compared with traditional finite-time and fixed-time studies, the system output tracking error under the proposed predefined-time controller converges to a small neighborhood of zero in finite time, whose upper bound is exactly a design parameter in the control algorithm. For the uncertain model, radial-based function neural network (RBFNN) is utilized to approximate the continuous uncertain dynamics. To deal with the actuator faults, an adaptive control law is involved in the fault-tolerant controller. In order to achieve the predefined-time bounded, a novel predefined-time sliding mode surface is designed. It is proved that the tracking error vector trajectory of closed-loop system is semi-globally uniformly ultimately predefined-time bounded, and the upper bounds of both the system settling time and the corresponding output tracking error can be adjusted with a simple parameter. Simulation examples finally demonstrate the effectiveness of the proposed control algorithm.  相似文献   

3.
考虑一种电机驱动的单连杆机械臂系统在受到输出约束时的自适应有限时间H∞跟踪控制问题.一个有限时间有界H∞性能的新概念被提出,并结合障碍Lyapunov函数(BLF)、神经网络自适应技术、有限时间控制理论和H∞控制理论,提出了一种该系统在输出受限条件下的自适应神经有限时间有界H∞跟踪控制器设计方法,避免了许多有限时间控制...  相似文献   

4.
一种自适应CMAC在交流励磁水轮发电系统中仿真研究   总被引:2,自引:0,他引:2  
李辉 《控制与决策》2005,20(7):778-781
在分析常规CMAC结构的基础上,针对一类非线性、参数时变和不确定的控制系统,提出了一种自适应CMAC神经网络的控制器.该控制器以系统动态误差和给定信号量作为CMAC的激励信号,并与自适应线性神经元网络相结合构成系统的复合控制.为了验证其有效性,将其应用到交流励磁水轮发电机系统的多变量非线性控制中,并与常规的PID控制效果进行了比较.仿真结果表明,该控制器具有较强鲁棒性和自适应能力,控制品质优良。  相似文献   

5.
针对一类不确定非线性系统, 提出一种变结构神经网络自适应鲁棒控制(Variable structure neural network adaptive robust control, VSNNARC)方法. 其中变结构神经网络用于在线辨识系统未知非线性函数, 该网络利用节点激活与催眠技术进行动态调节, 减小网络规模与计算量; 自适应鲁棒控制用于网络权值学习与系统建模误差及外部扰动补偿. 采用Lyapunov稳定性分析法, 给出网络权值自适应律的形式以及鲁棒控制项的设计方法. 该方法不仅能保证系统的稳定性, 也能保证系统具有很好的瞬态性能. 将该方法应用到转台伺服系统的位置跟踪控制中, 实际运行结果表明, 该方法使系统具有很强的鲁棒性及良好的跟踪效果.  相似文献   

6.
A new adaptive multiple neural network controller (AMNNC) with a supervisory controller for a class of uncertain nonlinear dynamic systems was developed in this paper. The AMNNC is a kind of adaptive feedback linearizing controller where nonlinearity terms are approximated with multiple neural networks. The weighted sum of the multiple neural networks was used to approximate system nonlinearity for the given task. Each neural network represents the system dynamics for each task. For a job where some tasks are repeated but information on the load is not defined and unknown or varying, the proposed controller is effective because of its capability to memorize control skill for each task with each neural network. For a new task, most similar existing control skills may be used as a starting point of adaptation. With the help of a supervisory controller, the resulting closed-loop system is globally stable in the sense that all signals involved are uniformly bounded. Simulation results on a cartpole system for the changing mass of the pole were illustrated to show the effectiveness of the proposed control scheme for the comparison with the conventional adaptive neural network controller (ANNC).  相似文献   

7.
针对具有模型不确定性以及外部干扰下的自由漂浮空间机器人,采用一种整体逼近的神经网络自适应控制方法。该方法采用RBF神经网络对不同重力环境下系统模型的不确定项进行整体逼近,对系统的不确定项进行在线自适应学习。神经网络的逼近误差以及外界干扰由鲁棒项进行消除。该方法不依赖于系统模型,简化了控制系统的结构,在考虑重力等不确定项的情况下不用改变控制器也能进行控制,并且根据李亚普诺夫理论证明了所设计控制器使系统渐进稳定。在不同重力环境下进行了仿真,验证了控制方案的有效性。  相似文献   

8.
This paper proposes an adaptive recurrent neural network control (ARNNC) system with structure adaptation algorithm for the uncertain nonlinear systems. The developed ARNNC system is composed of a neural controller and a robust controller. The neural controller which uses a self-structuring recurrent neural network (SRNN) is the principal controller, and the robust controller is designed to achieve L 2 tracking performance with desired attenuation level. The SRNN approximator is used to online estimate an ideal tracking controller with the online structuring and parameter learning algorithms. The structure learning possesses the ability of both adding and pruning hidden neurons, and the parameter learning adjusts the interconnection weights of neural network to achieve favorable approximation performance. And, by the L 2 control design technique, the worst effect of approximation error on the tracking error can be attenuated to be less or equal to a specified level. Finally, the proposed ARNNC system with structure adaptation algorithm is applied to control two nonlinear dynamic systems. Simulation results prove that the proposed ARNNC system with structure adaptation algorithm can achieve favorable tracking performance even unknown the control system dynamics function.  相似文献   

9.
基于神经网络与多模型的非线性自适应广义预测控制   总被引:9,自引:0,他引:9  
针对一类不确定非线性离散时间动态系统, 提出了基于神经网络与多模型的非线性广义预测自适应控制方法. 该自适应控制方法由线性鲁棒广义预测自适应控制器, 神经网络非线性广义预测自适应控制器和切换机制三部分构成. 线性鲁棒广义预测自适应控制器保证闭环系统的输入输出信号有界, 神经网络非线性广义预测自适应控制器能够改善系统的性能. 切换策略通过对上述两种控制器的切换, 保证系统稳定的同时, 改善系统性能. 给出了所提自适应方法的稳定性和收敛性分析. 最后通过仿真实例验证了所提方法的有效性.  相似文献   

10.
Da Lin  Xingyuan Wang 《Neurocomputing》2011,74(12-13):2241-2249
This paper proposes a self-organizing adaptive fuzzy neural control (SAFNC) for the synchronization of uncertain chaotic systems with random-varying parameters. The proposed SAFNC system is composed of a computation controller and a robust controller. The computation controller containing a self-organizing fuzzy neural network (SOFNN) identifier is the principle controller. The SOFNN identifier is used to online estimate the compound uncertainties with the structure and parameter learning phases of fuzzy neural network (FNN), simultaneously. The structure-learning phase consists of the growing of membership functions, the splitting of fuzzy rules and the pruning of fuzzy rules, and thus the SOFNN identifier can avoid the time-consuming trial-and-error tuning procedure for determining the network structure of fuzzy neural network. The robust controller is used to attenuate the effects of the approximation error so that the synchronization of chaotic systems is achieved.All the parameter learning algorithms are derived based on the Lyapunov stability theorem to ensure network convergence as well as stable synchronization performance. To demonstrate the effectiveness of the proposed method, simulation results are illustrated in this paper.  相似文献   

11.
A novel neural network-based robust finite-time control strategy is proposed for the trajectory tracking of robotic manipulators with structured and unstructured uncertainties, in which the actuator dynamics is fully considered. The controller, which possesses finite-time convergence and strong robustness, consists of two parts, namely a neural network for approximating the nonlinear uncertainty function and a modified variable structure term for eliminating the approximate error and guaranteeing the finite-time convergence. According to the analysis based on the Lyapunov theory and the relative finite-time stability theory, the neural network is asymptotically convergent and the controlled robotic system is finite time stable. The proposed controller is then verified on a two-link robotic manipulator by simulations and experiments, with satisfactory control performance being obtained even in the presence of various uncertainties and external disturbances.  相似文献   

12.
In this paper, an adaptive neural network (NN) tracking controller is developed for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with input saturation. Radial basis function neural networks are utilized to approximate the unknown nonlinear functions in the MIMO system. A novel auxiliary system is developed to compensate the effects induced by input saturation (in both magnitude and rate) during tracking control. Endowed with a switching structure that integrates two existing representative auxiliary system designs, this novel auxiliary system improves control performance by preserving their advantages. It provides a comprehensive design structure in which parameters can be adjusted to meet the required control performance. The auxiliary system signal is utilized in both the control law and the neural network weight-update laws. The performance of the resultant closed-loop system is analyzed, and the bound of the transient error is established. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive neural network control.  相似文献   

13.
This paper presents an adaptive PI Hermite neural control (APIHNC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The proposed APIHNC system is composed of a neural controller and a robust compensator. The neural controller uses a three-layer Hermite neural network (HNN) to online mimic an ideal controller and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Moreover, a proportional–integral learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed APIHNC system is applied to an inverted double pendulums and a two-link robotic manipulator. Simulation results verify that the proposed APIHNC system can achieve high-precision tracking performance. It should be emphasized that the proposed APIHNC system is clearly and easily used for real-time applications.  相似文献   

14.
In this paper, an adaptive neural finite-time control method via barrier Lyapunov function, command filtered backstepping, and output feedback is proposed to solve the tracking problem of uncertain high-order nonlinear systems with full-state constraints and input saturation. By utilizing the neural network (NN) to approximate unknown nonlinear functions, the finite-time command filters are used to filtering the virtual control signals and get the intermediate control signals in a finite time in the backstepping process. Because there are errors between the output of finite-time command filters and the virtual control signals, the error compensation signals are added to eliminate the influence of filtering errors. Based on the proposed control scheme, the states of the system can be constrained in the predetermined region, all signals in the system are bounded in finite time, and the tracking error can converge to the desired region in finite time. At last, a simulation example is given to show the effectiveness of the proposed control method.  相似文献   

15.
A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.  相似文献   

16.
针对一类不确定系统的跟踪控制,设计了一种将GBF-CMAC(cerebellar model articulation controller with Gauss basis function)与滑模控制相结合的控制系统。利用符号距离和分层结构减少了神经网络所需存储器的数量,并提出了一种神经网络参数的自适应学习律。将设计的控制器用于含有不确定性和欠驱动结构的高阶柔性直线结构系统的跟踪控制,并与一般滑模控制和积分滑模控制进行了比较。实验结果表明,所设计的控制器不仅具有较好的鲁棒性,而且改善了滑模控制存在的抖振问题。同时通过调整神经网络的参数对抖振进行控制,实现了抖振和跟踪性能之间的最优选择。  相似文献   

17.

In this paper, a finite-time tracking control scheme for perturbed undetermined nonlinear systems governed by dead-zone inputs and actuator faults is investigated. By means of dynamic surface control technique, a suitable adaptive neural network controller is introduced, which guarantees that all signals in the closed-loop system are bounded, and that all state trajectories of the error dynamics converge to a small region in the sense of semi-globally practically finite-time stabilization. Finally, a numerical simulation is taken into consideration for the reliability of the proposed methodology.

  相似文献   

18.
A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.  相似文献   

19.
针对含运动学未知参数以及动力学模型不确定的非完整轮式移动机器人轨迹跟踪问题,基于Radical Basis Function(径向基函数)神经网络,提出了一种鲁棒自适应控制器.首先,考虑移动机器人运动学参数未知的情况,提出了一种含自适应参数的运动学控制器,用以补偿参数不确定性导致的系统误差;其次,利用神经网络控制技术,对于机器人在移动中动力学模型不确定问题,提出了一种具有鲁棒性的动力学控制器,使得移动机器人可以在不知道具体动力学模型的情况下跟踪到目标轨迹;最后利用Lyapunov稳定性理论证明了整个系统的稳定性.通过数值仿真验证了所设计的控制器的可行性.  相似文献   

20.
针对污水处理过程溶解氧浓度的控制问题,提出一种直接自适应动态神经网络控制方法(direct adaptive dynamic neural network control,DADNNC).构建的控制系统主要包括神经网络控制器和补偿控制器.神经网络控制器由自组织模糊神经网络实现系统状态与控制量之间的映射;提出一种基于规则无用率的结构修剪算法,并给出结构调整后网络收敛的理论证明.同时,为保证系统稳定,设计补偿控制器减小网络逼近误差,参数调整由Layapunov理论给出.国际基准仿真平台上的实验表明,与固定结构神经网络控制器、PID和模型预测控制等已有控制方法相比,DADNNC方法具有更高的控制精度和更强的适应能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号