共查询到19条相似文献,搜索用时 65 毫秒
1.
采用热丝化学气相沉积(HFCVD)裂解噻吩的方式制备了新型锂电池正极材料,通过SEM、IR、Raman和EDAX对正极材料的结构和性能进行表征.结果表明,产物为颗粒状薄膜材料,颗粒的平均大小约为400 nm,且主要由碳、硫两种元素组成.通过充放电和循环性能测试对其电化学性能进行了初步考察.结果表明,在100 mA/g的电流密度下,电池的首次放电比容量为604 mAh/g,15次循环后电池比容量维持在336 mAh/g.讨论了放电电压平台低及循环容量衰减的原因. 相似文献
2.
《河南机电高等专科学校学报》2020,(1):72-76
为了抑制锂碘(Li-I_2)电池充放电过程中碘单质的溶解穿梭效应和自放电效应,提高Li-I_2电池的循环稳定性,以多孔活化石墨烯(AG)为载体,采用溶液吸附法制备了碘-活化石墨烯(I_2-AG)复合材料。结构测试结果表明,AG为三维层状堆积的疏松多孔结构,具有较高的比表面积、丰富的纳米孔结构和大孔容,有利于活性物质碘的负载及充放电过程中离子的传输。电化学测试结果表明,I_2-AG复合材料表现出了优良的电化学循环和倍率性能,具体表现为I_2-AG复合材料在1、2、5和20 C倍率下的放电比容量分别为325.3、302、293.3和270.4 mA h g~(–1),循环500周后,其剩余放电比容量分别为220.6、209.9、234.7和274.3mA h g~(–1)。整体而言,制备的I_2-AG复合材料有效地抑制了碘单质的溶解穿梭效应和自放电效应。 相似文献
3.
《军民两用技术与产品》2012,(12):35
技术开发单位陕西应用物理化学研究所技术简介采用该技术可生产磷酸铁锂、三元材料、锰酸锂3种锂电池用正极材料。其中,磷酸铁锂的生产采用了水系湿法混料、喷雾干燥、干法压块造粒等新工艺;三元材料首先采用共沉淀法制备前驱体,以有效地控制结构,再与碳酸锂混料烧结制得;锰酸锂的生产采用了金属离子复合掺杂、表面包覆、混料等先进工艺,保证了原材料充分、均匀地混合。技术特点及水平采用该技术生产的磷酸铁锂具有良好的安全性 相似文献
4.
崔月芝 《山东轻工业学院学报》1999,13(1):25-28,54
本文对目前用作锂电池正极材料研究的三类有机化合物-三苯甲烷类及醌亚胺类染料、酞菁化合物、有机电子受体化合物的电极性能及特点作了综述。大多数酞菁化合物及部分有机电子受体化合物具有很高的比容量、比能量及良好的循环性能。 相似文献
5.
当前市场对于新一代高能量密度的电池需求日益迫切,锂硫电池作为最有前景的二次电池之一,其正极材料的研究广受关注。而生物质为前驱体的碳材料因其来源广泛易制备、环境友好性能高而不断被应用到锂硫电池正极材料的研究中。介绍了正极材料的研究现状,制备生物质基碳材料的主要方法,不同制备因素对于生物质碳材料的影响以及在锂硫电池中性能的影响;介绍了生物质碳材料结合目前正极材料的改进措施的实例;最后对生物质碳材料在锂硫电池正极未来的发展方向提出了思考。 相似文献
6.
《南昌水专学报》2019,(4):104-108
针对高比能二次电池中,锂硫电池在反应过程中出现的中间产物溶解流失及体积膨胀等问题,采用模板法制备了一种具有空心结构的高孔容介孔碳球(标记为SiO_2~-空心碳),不仅提高了载硫量,而且可将多硫化物吸附在球体的空心结构和壳层的介孔孔隙中,从而抑制活性物质的溶解流失。扫描电子显微镜(SEM)和透射电子显微镜(TEM)、氮气吸脱附表征结果表明多孔碳呈空心球结构,壳层布满介孔孔隙,孔径约为2~4 nm; X-射线衍射(XRD)图谱说明单质硫均匀分散在空心碳孔隙结构中;热重分析结果显示,SiO_2~-空心碳/S复合材料的硫含量为74. 2%;电化学测试表明,其首周放电比容量增加至1608. 6(mA·h·g~(-1)),循环100周后仍保持在863. 4(mA·h·g~(-1))以上,说明SiO_2~-空心碳/S复合材料具有较好的电化学活性及循环稳定性。采用KS6为导电剂,可以使复合硫电极循环100周后的可逆比容量提高至961(mA·h·g~(-1)),容量保持率提高至61. 7%,可见KS6导电剂可以明显改善SiO_2~-空心碳/S复合材料的循环性能。 相似文献
7.
采用固相反应法合成了锂离子电池正极材料Li0.97Re0.01FePO4(Re=Er,Y,Gd,Nd,La),采用X射线衍射、恒电流充放试验对掺杂试样的微观结构和电化学性能进行测试。试验结果表明:掺杂稀土金属离子对LiFePO4的晶体结构没有影响,与LiFePO4相比,掺杂Er3+,Y3+,Gd3+的试样具有优良的循环性能和倍率性能,而掺杂Nd3+,La3+的试样的循环性能和倍率性能较差。掺杂试样中,Li0.97Gd0.01FePO4的电化学性能最佳,在C/10和1C(1C=120 mA.g-1)倍率下放电容量均最大。 相似文献
8.
采用固相反应法合成了锂离子电池正极材料Li0.97Re0.01FePO4(Re=Er,Y,Gd,Nd,La),采用X射线衍射、恒电流充放试验对掺杂试样的微观结构和电化学性能进行测试。试验结果表明:掺杂稀土金属离子对LiFePO4的晶体结构没有影响,与LiFePO4相比,掺杂Er^3+,Y^3+,Gd^3+的试样具有优良的循环性能和倍率性能,而掺杂Nd^3+,La^3+的试样的循环性能和倍率性能较差。掺杂试样中,Li0.97Re0.01FePO4的电化学性能最佳,在C/10和1C(1C=120mA·g^-1)倍率下放电容量均最大。 相似文献
9.
10.
以废弃磷化渣为原料, 利用酸液水热过滤法对磷化渣提纯。将所得纯度较高的磷酸铁为铁源, 通过加入锰
盐来制备含有掺杂锰元素的前驱体, 经过高温还原后可得到掺杂锰元素的磷酸亚铁锂/碳电池正极材料。利用X 射
线衍射仪、X 射线荧光光谱仪、扫描电子显微镜和LAND 测试仪对不同组成的磷酸铁锂/碳电池正极材料的颗粒形
貌、物相及扣式电池的电化学性能进行表征。结果表明: 掺杂锰元素的磷酸亚铁锂/碳材料在大倍率下仍能保持较高
的容量保持率, 这对于制作大倍率电池具有重要的意义。 相似文献
11.
锂离子电池三元正极材料[Li-Ni-Co-Mn-O]的研究进展 总被引:1,自引:1,他引:1
从制备性能、改性和安全性能3个方面,论述了锂离子电池三元正极材料[Li-Ni-Co-Mn-O]的研究现状,指出了其产业化所面临的问题,并给出了相应的对策. 相似文献
12.
采用不同化学计量比的单质硫和五氧化二钒合成复合材料,应用XRD和SEM表征观察硫-五氧化二钒复合材料,循环伏安、交流阻抗和电池充放电测试材料的电化学性能。结果表明:n(S)∶n(V2O5)为5∶1时具有较好的电化学性能,首次放电比容量为396.7 mAh·g^-1,以0.1 C倍率循环20次后的容量为350 mAh·g^-1。 相似文献
13.
层状镍钴锰复合材料LiNixCoyMnzO2具有比商业化锂离子电池正极材料——Li-CoO2低廉的成本、更低的毒性、更好的热稳定性,近年来受到广大科研工作者的关注.本文重点介绍了近年来层状镍钴锰复合正极材料合成方法及掺杂、包覆改性方面的研究成果,并简要概括了目前存在的问题及材料未来的研究趋势. 相似文献
14.
为了增强电池隔膜的润湿性能和热稳定性,使用聚丙烯腈(PAN)改性聚乙烯(PE)电池隔膜,探究其机械性能、润湿性能、热稳定性和电池倍率性能的变化.结果显示,聚丙烯腈静电纺丝改性PE隔膜表面电解液和抗高温热收缩性提高,瞬时电解液接触角由初始的48.8°降至28.9°,且组装的锂离子电池的循环性能和倍率容量均有一定程度的改善... 相似文献
15.
16.
综述了锂离子电池正极材料的工作原理、应具备的结构与性质以及目前最具有吸引力的三种正极材料LiCoO2、LiNiO2、LiMn2O4。通过比较这三种正极材料的制备方法和电化学性能,讨论了这些材料存在的问题和相应的解决方法。 相似文献
17.
采用固相法以CuO粉末和V2O5粉末为原料制备α-CuV2O6粉末,用X射线衍射分析(XRD)、差热分析(DTA)和粒度分析方法对铜钒氧材料进行了表征,并对其作为热电池正极材料的电化学行为进行了研究。电化学性能测试表明,制备的α-CuV2O6电极单体电池具有较高的放电电压和较大的放电比容量。 相似文献
18.
锂离子电池用磷腈类聚合物电解质的制备与性能 总被引:1,自引:1,他引:1
采用六氯环三磷腈高温开环聚合方法制备了聚二氯磷腈,然后采用醇钠法,取代聚二氯磷腈的氯,制备了聚二(二乙二醇单甲醚)磷腈(MEEP),探索出了较佳的合成工艺,采用FT-IR、31P-NMR、13C-NMR、质谱对其进行了结构表征和分析。结果表明,所制备的磷腈聚合物确实为MEEP。采用自制的MEEP,与三氟甲基磺酸锂(LiCF3SO3)盐进行复配,制备了锂离子电池用聚合物固体电解质,对其热稳定性、导电性进行了测试,其开始分解温度在200℃以上,室温电导率达到了1.187×10-4S/cm(25℃),具有较佳的导电性和热稳定性,可用于锂离子电池的电解质。 相似文献
19.
在废旧磷酸铁锂电池回收的工艺流程中,研究高温煅烧与有机溶剂对正极活性材料的分离效果。正极片在500℃的N2氛围下加热5 h,活性材料的分离率(η)达到95.98%。在60℃固液比(g/mL) 1:25的条件下,将表面积0.25 cm~2的正极片浸泡在碳酸丙烯酯(PC)溶剂中超声120 min,活性材料的η达到68.6%。相比传统的处理方法,这两种方法降低了成本,避免因采用强酸强碱而产生二次污染。 相似文献