共查询到18条相似文献,搜索用时 109 毫秒
1.
用Zn掺杂和热处理改善SnS薄膜的电学特性 总被引:1,自引:0,他引:1
用质量比为1%∶0.2%(质量分数)的Sn、S混合粉末在玻璃衬底上热蒸发沉积SnS薄膜,氮气保护下对薄膜进行350℃、40min热处理后,得到简单正交晶系SnS多晶薄膜,薄膜的电阻率为103Ω.cm,选择2%和4%(质量分数)的Zn掺杂来改善SnS薄膜的导电性。研究表明,SnS∶Zn薄膜最有效的热处理条件为300℃、40min,掺Zn后薄膜的物相结构转为简单正交和面心正交晶系混合相,SnS∶Zn薄膜(2%和4%(质量分数))的电阻率在1.8528×10-3~4.944×10-4Ω.cm之间,导电类型为N型。薄膜中Sn和S分别呈+2和-2价,Zn显示+2价,以间隙和替位两种状态存在于SnS中,对薄膜导电性起改善作用的是间隙态的Zn离子。 相似文献
2.
高纯Sn和S粉按1∶0.41%(质量分数)配比,均匀掺入9%(质量分数)的高纯Zn粉,单源共蒸发沉积薄膜后再进行热处理,得到Sn2S3∶Zn薄膜。XRD分析显示,380℃,55min热处理得到简单正交晶系的纯Sn2S3薄膜。掺Zn 9%(质量分数)的薄膜经370℃热处理15min得到的薄膜仍属简单正交晶系。掺Zn后Sn2S3薄膜的表面均匀和致密性变好,平均晶粒尺寸从未掺Zn时的35.69nm增加到58.80nm。Sn2S3薄膜的导电类型均为N型,掺Zn后薄膜的电阻率为60.5(Ω·cm),比未掺杂时降低1个数量级。Sn2S3薄膜的直接光学带隙为1.85eV,本征吸收边为551nm;Sn2S3∶Zn 9%(质量分数)薄膜的光学带隙1.41eV,本征吸收边873nm发生红移,Sn2S3薄膜的光吸收系数均达到105cm-1。 相似文献
3.
Zn掺杂TiO2薄膜紫外探测器及其光电性能研究 总被引:1,自引:0,他引:1
采用射频磁控溅射的方法制备Zn掺杂TiO2薄膜,用XRD、SEM和UV-Vis分别表征TiO2薄膜的晶体结构、表面形貌及其紫外-可见光吸收谱.并用此材料制备Au/TiO2/An结构MSM光电导型薄膜紫外光探测器,研究其光电特性.实验结果表明,Zn掺杂TiO2紫外探测器在250 nm、5 V偏压紫外光照下光电流约为500μA,其响应度为100 A/W,平均暗电流约为0.5μA;由于ZnO/TiO2复合薄膜之间的费米能级不同而形成的内建电场作用,减少了产生的光生电子与空穴的复合,得到较强的光电流.且其光响应的上升迟豫时间约为22 s,下降响应时间约为80 s;响应时间较长是由于广泛分布于薄膜中的缺陷而造成的.结果表明Zn掺杂TiO2可作为一种良好的紫外探测材料. 相似文献
4.
SnO2薄膜具有透明导电的特性,因而被制成透明电极而广泛应用于平板显示器和太阳能电池中。研究表明,经掺杂的薄膜具有更优异的光电性能,然而传统的掺杂元素Sb,Te或F较为昂贵且有毒性,因此,掺氮将有望解决上述问题。本文利用反应射频磁控溅射法制备出不同氧含量的SnO2以及氮掺杂SnO2薄膜,并分析了薄膜的形貌结构及光电性能。结果表明:薄膜沉积过程中氧分压和氮掺杂对薄膜性能影响较大。在SnO2薄膜中,晶粒呈包状形态,随着氧分压的增加,晶粒取向从(101)转向(110)方向,晶粒尺寸逐渐变小,可见光透光率提升到80%以上,光学带隙增加到4.05 eV;在氮掺杂SnO2薄膜中,晶粒呈四棱锥形态,晶粒取向为(101)方向,随着氧分压的增加,可见光的透过率同样提升到80%以上,光学带隙增加到3.99 eV。SnO2薄膜和氮掺杂SnO2薄膜的电阻率最低分别达到1.5×10-1和4.8×10-3Ω.cm。 相似文献
5.
采用真空热蒸发法,在玻璃衬底上制备纳米SnS2薄膜。研究不同Sn和S配比及不同热处理条件对薄膜性能的影响。实验给出采用Sn∶S=1∶1.5摩尔比混合粉末制备的薄膜,经T=430℃,t=40min氮气保护热处理可获得性能良好的SnS2纳米多晶薄膜。薄膜呈n型、表面结构较致密,平均晶粒尺寸为77nm,直接光学带隙约为2.02eV。 相似文献
6.
真空共蒸发制备掺Zn(2%,4%(质量比))的SnS薄膜。研究热处理对Zn掺杂SnS薄膜的结构、表面形貌、化学组分及光学特性的影响。实验给出2%掺Zn薄膜经300℃,40 min热处理后,得到正交晶系的SnS多晶薄膜。掺Zn可一定程度抑制薄膜中S的损失,使薄膜体内Sn∶S元素化学计量得到改善,从未掺Zn的Sn∶S比为1.90∶1降到1.38∶1(2%)及1.36∶1(4%)。掺Zn后SnS薄膜的吸收边都发生红移,光吸收系数高达105cm-1。未掺Zn薄膜的直接光学带隙1.95 eV,掺Zn是1.375 eV(2%)和1.379 eV(4%)。Sn和S在薄膜中分别呈+2和-2价态,Zn以间隙和替位两种状态存在。 相似文献
7.
温度对Zn掺杂TiO2薄膜光电化学性能的影响 总被引:2,自引:0,他引:2
以四氯化钛为前驱体,以ZnCl2为锌源,采用溶胶-凝胶法在纯钛基体上制备了Zn掺杂纳米TiO2薄膜(Zn-TiO2),研究了温度对Zn掺杂纳米TiO2薄膜在0.2mol/L Na2SO4中的光电化学性能的影响。根据Mott-Shottky曲线可知,Zn-TiO2薄膜为n型半导体;经过300℃热处理的Zn-TiO2薄膜,导带位置最高,空间电荷层宽度W最大。从电化学阻抗谱得到,光照下300℃热处理的Zn-TiO2薄膜电阻较暗态下降低最多。通过线性伏安曲线发现,300℃热处理的Zn-TiO2薄膜具有最强的光电流。 相似文献
8.
真空蒸发制备Sb掺杂Sn2S3多晶薄膜。研究不同比例Sb掺杂对Sn2S3薄膜的电学、结构、表面形貌、化学组分的影响,实验给出掺Sb5%薄膜经380℃热处理30 min可获得结构良好正交晶系的Sn2S3∶Sb多晶薄膜,薄膜的电阻率从未掺杂时的79kΩ.cm降到23.7Ω.cm,下降了三个数量级。Sn2S3薄膜表面为颗粒状,体内化学计量比Sn/S为1∶1.49,与标准计量比非常接近;掺Sb(5%)后为1∶0.543,Sn过量。Sn和S以Sn2+,Sn4+,S2-形式存在于薄膜中;Sb元素显示正5价,部分Sb5+进入晶格替位Sn4+。 相似文献
9.
采用蒸发诱导自组装方法,在导电玻璃基体上制备了具有高热稳定性、高比表面积的TiO_2薄膜。运用扫描电子显微镜、X射线衍射分析仪对TiO_2薄膜的形貌和结构进行了分析,表明制备出的纳米晶TiO_2薄膜具有多孔的锐钛矿结构,晶粒平均尺寸d为29.2nm。以D102染料敏化的TiO_2薄膜为阳极,0.3mol/L KI溶液为电解液,铂电极为阴极,组成太阳能电池,通过电流-电压曲线研究了太阳能电池的性能。结果表明:太阳能电池的J短路为17.80mA·cm-2,U开路为0.60V,填充因子FF为0.54,光电转换效率为0.39%。 相似文献
10.
在常温、加温和光照三种环境下,通过采用溶胶凝胶法在玻璃基片上制备成的混合掺杂Cu_TiO2和Fe_TiO2的SnO2薄膜在乙醇、丙酮两种气氛作用下进行气敏反应前后的光反射谱测试,研究薄膜的返回特性。研究分析表明,掺杂SnO2薄膜在常温返回特性不理想,在100℃加温3分钟和红外线光照10分钟后,掺杂SnO2薄膜测试光反射谱表明返回特性表现良好,能在较短时间和较宽波段内返回。 相似文献
11.
热蒸发法制备SnS薄膜及其表征 总被引:2,自引:1,他引:2
用热蒸发技术在ITO玻璃基片上沉积SnS薄膜.通过对该薄膜进行结构、成分和表面形貌分析,表明它是具有正交结构的SnS多晶薄膜;相对于恒电流电沉积法制备的SnS薄膜来说,该薄膜颗粒更细,粒径在(60~100) nm,并且它的均匀性和对基片的附着力也更好.通过测量薄膜样品的反射和透射光谱,得到其直接禁带宽度Eg=1.34 eV,在基本吸收边附近的吸收系数大于2×104 cm-1.该薄膜的导电类型为p型,电阻率的数量级为10-2 Ω·cm.因此,用热蒸发技术制备出的SnS薄膜的质量和性能都比较理想,该薄膜非常适合做太阳能电池的吸收层. 相似文献
12.
通过热蒸镀Cu膜并在空气中退火制备Cu2O薄膜,利用X射线衍射(XRD)、能量分散X射线谱(EDX)和原子力显微镜(AFM)研究了已沉积和不同温度退火薄膜的晶体结构、成份和表面形貌。结果表明,Cu膜在200℃退火30分钟可以得到具有单一成份的Cu2O薄膜。四探针测量得到所制备的Cu2O薄膜电阻率为0.22Ωcm。用紫外可见光分光光度计(UV-vis)研究了Cu2O薄膜的光学特性,得出其光学带隙为2.4eV。 相似文献
13.
利用脉冲激光沉积法在玻璃衬底上制备SnS薄膜,研究了SnS薄膜的晶体结构、表面形貌以及有关光学特性。所制备的SnS薄膜样品为斜方晶系多晶结构,在(111)晶面上有很强的择优取向性;衬底温度在100~400℃范围内,表面形貌有所区别,随着温度升高,薄膜表面分别呈现大小晶粒共存、片状颗粒、针状颗粒和锥状颗粒的形貌特征;紫外区的SnS薄膜透过率极低,可见光范围的透过率很低,近红外区的透过率较大;样品在可见区和紫外区吸收强烈,吸收系数达105cm-1量级,直接禁带宽度为1.39~1.46 eV。 相似文献
14.
A Study of the Structural, Optical and Electrical Properties of SnS Thin Films Modified by Plasma 总被引:1,自引:0,他引:1
Aarn Gomez Horacio Martinez Manuela Calixto-Rodriguez David Avellaneda Pedro Guillermo Reyes Osvaldo Flores 《材料科学与工程:中英文B版...》2013,(6):352-358
SnS thin films were deposited by chemical bath deposition technique and treated using glow discharge 02 plasma. The pressure discharge was 3 Torr, discharge voltage of 2.5 kV and 20 mA of discharge current. The as-deposited and treated thin films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The photoconductivity and electrical effects of SnS have been studied. The SnS thin films had an orthorhombic crystalline structure. The optical gap changed from 1.61 to 1.84 eV due to the 02 plasma treatment. The conductivity shows a marked increase with the treatment, from 2.56×10^-6 (Ω·cm)-1 for as-deposited film until 0.10 (Ω·cm)-1 for the film treated at 180 rain. This result is a suitable range of conductivity for the improvement of the solar cell with SnS as an absorber material. 相似文献
15.
用磁控溅射法在集成了铂加热电极的Si基膜片型微结构单元上制备了SnO2 和SnO2 Ag敏感薄膜。用温度调制方式和锯齿波加热方式研究了薄膜的电学特性 ,讨论了银催化剂、湿度及氧分压对SnO2 电学特性的影响。从温度调制方式下测得的电阻 温度曲线可以区分由热激发过程和由表面反应过程引起的膜电阻变化。这种方法为研究气敏薄膜表面反应过程和气敏响应机理开辟了新的途径。 相似文献
16.
ZrO2薄膜的力学性能和摩擦学性能研究 总被引:2,自引:0,他引:2
在单晶硅表面成功地获得了自组装单层薄膜(MPTS-SAM),并将薄膜表面的巯基(-SH)完全氧化成磺酸基(-SO3H),从而获得了磺酸化的MPTS-SAM.采用静电自组装技术成功使ZrO2纳米微粒组装到磺酸化的MPTS-SAM表面获得淀积ZrO2薄膜.将ZrO2薄膜分别在500℃和800℃进行热处理后,ZrO2薄膜的厚度逐渐减小,这可能是随着温度的升高薄膜的表面密度逐渐增大所致.对ZrO2薄膜的力学和抗划伤性能分析发现:随着温度的升高,ZrO2薄膜的硬度和弹性模量依次增加,同时薄膜的抗划伤性能也逐渐提高.摩擦磨损实验表明:利用该方法制备的ZrO2薄膜经800℃烧结处理后适于在低负荷、低滑动速度下作为减摩、抗磨保护性涂层. 相似文献
17.
SnS films with thicknesses of 20-65 nm have been deposited on glass substrates by thermal evaporation. The physical properties of the films were investigated using X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and ultraviolet-visible-near infrared spectroscopy at room temperature. The results from XRD, XPS and Raman spectroscopy analyses indicate that the deposited films mainly exhibit SnS phase, but they may contain a tiny amount of Sn2S3. The deposited SnS films are pinhole free, smooth and strongly adherent to the surfaces of the substrates. The color of the SnS films changes from pale yellow to brown with the increase of the film thickness from 20 nm to 65 nm. The very smooth surfaces of the thin films result in their high reflectance. The direct bandgap of the films is between 2.15 eV and 2.28 eV which is much larger than 1.3 eV of bulk SnS, this is deserving to be investigated further. 相似文献