首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physics-based compact modeling, supported by numerical simulations, is used to show the significance of "drain-induced charge enhancement" (DICE) in nanoscale double-gate (DG) MOSFETs. DICE, which is the strong-inversion counterpart of drain-induced barrier lowering (DIBL), is shown to significantly benefit drive current, without affecting the gate capacitance much, and hence can improve nanoscale DG CMOS speed substantially.  相似文献   

2.
In the present work, by investigating the influence of source/drain (S/D) extension region engineering (also known as gate-underlap architecture) in planar Double Gate (DG) SOI MOSFETs, we offer new design insights to achieve high tolerance to gate misalignment/oversize in nanoscale devices for ultra-low-voltage (ULV) analog/rf applications. Our results show that (i) misaligned gate-underlap devices perform significantly better than DG devices with abrupt source/drain junctions with identical misalignment, (ii) misaligned gate underlap performance (with S/D optimization) exceeds perfectly aligned DG devices with abrupt S/D regions and (iii) 25% back gate misalignment can be tolerated without any significant degradation in cut–off frequency (fT) and intrinsic voltage gain (AVO). Gate-underlap DG devices designed with spacer-to-straggle ratio lying within the range 2.5 to 3.0 show best tolerance to misaligned/oversize back gate and indeed are better than self-aligned DG MOSFETs with non-underlap (abrupt) S/D regions. Impact of gate length and silicon film thickness scaling is also discussed. These results are very significant as the tolerable limit of misaligned/oversized back gate is considerably extended and the stringent process control requirements to achieve self-alignment can be relaxed for nanoscale planar ULV DG MOSFETs operating in weak-inversion region. The present work provides new opportunities for realizing future ULV analog/rf design with nanoscale gate–underlap DG MOSFETs.  相似文献   

3.
Physical device/circuit simulations are used to explore 6T-SRAM cell design and scaling using double-gate (DG) FinFETs with optimized gate-source/drain (G-S/D) underlap. The underlap is designed for the control of threshold voltage (Vt) in the nanoscale FinFET with undoped ultrathin body (UTB). DG FinFETs with underlap are first characterized in terms of for various S/D-extension lengths (Lext), lateral doping-density straggles (sigmaL), and fin-UTB thicknesses (wSi). The relation between and read-static noise margin (SNM) is established to define an optimal SRAM cell, for the Semiconductor Industry Association's International Technology Roadmap for Semiconductors (ITRS) HP45 node with Lg=18 nm, with large SNM as well as large write-0 margin and good immunity to process-induced variations of Lext, sigmaL, wSi, and Lg. Then, a scalability study of the DG FinFET-based SRAM cell is done, showing a continual significant benefit of the optimally designed doable underlaps to the end of the ITRS. In addition to the SRAM application, the novel idea of FinFET Vt control via underlap design is stressed, and its application to high-performance CMOS is discussed.  相似文献   

4.
Modeling and optimization of fringe capacitance of nanoscale DGMOS devices   总被引:3,自引:0,他引:3  
We analyze the impact of gate electrode thickness and gate underlap on the fringe capacitance of nanoscale double-gate MOS (DGMOS) transistors. We propose an analytical fringe capacitance model considering gate underlap and finite source/drain length. A comparison with the simulation results show that the model can accurately estimate the fringe capacitance of the device. We show that an optimum gate underlap can significantly reduce the fringe capacitance resulting in higher performance and lower power consumption. Also, the effects of process variation in gate underlap devices are discussed. Simulation results on a three-stage ring oscillator show that with optimum gate underlap 32% improvement in delay can be achieved.  相似文献   

5.
Nanoscale FinFETs with gate-source/drain underlap   总被引:4,自引:0,他引:4  
Using two-dimensional numerical device simulations, we show that optimally designed nanoscale FinFETs with undoped bodies require gate-source/drain (G-S/D) underlap that can be effectively achieved via large, doable straggle in the S-D fin-extension doping profile without causing S-D punch-through. The effective underlap significantly relaxes the fin-thickness requirement for control of short-channel effects (SCEs) via a bias-dependent effective channel length (L/sub eff/), which is long in weak inversion and approaches the gate length in strong inversion. Dependence of L/sub eff/ on the S/D doping profile defines a design tradeoff regarding SCEs and S/D series resistance that can be optimized, depending on the fin width, via engineering of the doping profile in the S/D fin-extensions. The noted optimization is exemplified via a well-tempered FinFET design with an 18-nm gate length, showing further that designs with effective underlap yield minimal parasitic capacitance and reduce leakage components such as gate-induced drain leakage current.  相似文献   

6.
T.Bendi  F.Djeffal  D.Arar 《半导体学报》2013,34(4):044003-7
The analytical modeling of nanoscale devices is an important area of computer-aided design for fast and accurate nanoelectronic design and optimization.In the present paper,a new approach for modeling semiconductor devices,nanoscale double gate DG MOSFETs,by use of the gradual channel approximation(GC) approach and genetic algorithm optimization technique(GA) is presented.The proposed approach combines the universal optimization and fitting capability of GA and the cost-effective optimization concept of quantum correction,to achieve reliable,accurate and simple compact models for nanoelectronic circuit simulations.Our compact models give good predictions of the quantum capacitance,threshold voltage shift,quantum inversion charge density and drain current.These models have been verified with 2D self-consistent results from numerical calculations of the coupled Poisson-Schrodinger equations.The developed models can also be incorporated into nanoelectronic circuit simulators to study the nanoscale CMOS-based devices without impact on the computational time and data storage.  相似文献   

7.
Nanoscale double-gate (DG) FinFETs with undoped fin bodies are shown to have threshold voltages (Vt) that can be adjusted for independent I ON and I OFF control by allowing limited source/drain (S/D) dopants in the channel. S/D engineering of the lateral doping profile in the extension is proposed as a viable means for effecting such channel doping [as well as gate-S/D (G-S/D) underlap] and, thus, adjusting Vt for optimal I ON/I OFF in low-power and high-performance applications of nanoscale-FinFET CMOS. Physics-based device simulations, numerical simulations, and measured current-voltage characteristics are used to demonstrate and support the proposed Vt design approach.  相似文献   

8.
On the feasibility of nanoscale triple-gate CMOS transistors   总被引:1,自引:0,他引:1  
The feasibility of triple-gate MOSFETs (TGFETs) for nanoscale CMOS applications is examined with regard to short-channel effects (SCEs) and gate-layout area. Three-dimensional numerical simulations of TGFETs reveal that much more stringent body scaling for SCE control is needed for undoped bodies relative to doped ones (which are not viable for nanoscale devices) due to the suppression of corner current conduction (which is technologically advantageous) in the former. When the undoped body is scaled for adequate SCE control, further analysis shows that the generic TGFET suffers from severe layout-area inefficiency relative to the fully depleted single-gate SOI MOSFET (FDFET) and the double-gate (DG) FinFET, and the inefficiency can be improved only by evolving the TGFET into a virtual FDFET or a virtual DG FinFET. We suggest then that the TGFET is not a feasible nanoscale CMOS transistor, and thus the DG FinFET, which is more scalable than the FDFET, seems to be the most promising candidate for future CMOS applications.  相似文献   

9.
Numerical simulation-based study of double-gate (DG) field-effect transistors (FETs) leads to the possibly viable concept of extremely scaled but nonself-aligned DG CMOS. Predictions of off-state current, on-state current, and circuit performance, accounting for short-channel effects and energy-quantization effects, in 25-nm DG FETs suggest that moderate back-gate underlap does not severely undermine the superior performance and leakage current of nanoscale DG CMOS relative to those of bulk-Si CMOS. The reverse back-gate biasing scheme for leakage reduction in DG CMOS is shown to be much more efficient than the reverse body biasing scheme in bulk Si even with moderate back-gate underlap.  相似文献   

10.
This paper discusses self-heating (SHE) effects in silicon-on-insulator (SOI) CMOS technology and applies device simulation to analyze the impact of thermal effects on the operation of nanoscale SOI n-MOSFETs. A 2-D drift-diffusion electrothermal simulation, using an electron transport model calibrated against Monte Carlo simulations at various temperatures, is employed in the analysis. We report the effects of device-structure parameters, such as SOI layer thickness, buried-oxide (BOX) thickness, source/drain (S/D) extension length, and thickness of the elevated S/D region, on the SHE of nanoscale MOSFETs. The SHE effects become significant due to the adoption of thin silicon layers and to the low thermal conductivity of the BOX, leading to the rise of large temperature under nominal operation conditions for high-performance digital circuits. The ac performance of SOI MOSFETs is influenced as well, and in particular, a severe degradation of the cutoff frequency of very short MOSFETs is predicted by numerical electrothermal device simulations. Although the effects of SHE on device performance are found to be somewhat modest and might be mitigated through device design, they may result in a degradation of the long-term reliability.  相似文献   

11.
An analytical total gate capacitance C/sub G/ model for symmetric double-gate (DG) and fully depleted silicon-on-insulator (FD/SOI) MOSFETs of arbitrary Si film is developed and demonstrated. The model accounts for the effects of carrier-energy quantization and inversion-layer screening and is verified via self-consistent numerical solutions of the Poisson and Schro/spl uml/dinger equations. Results provide good physical insight regarding C/sub G/ degradation due to quantization and screening governed by device structure and/or transverse electric field for nanoscale DG and FD/SOI MOSFETs. Two limits of C/sub G/ at ON-state are then derived when the silicon film t/sub Si/ approaches zero and infinity. The effect of inversion-layer screening on C/sub G/, which is significant for ultrathin Si-film DG MOSFETs, is quantitatively defined for the first time. The insightful results show that the two-dimensional screening length for DG MOSFETs is independent of the doping density and much shorter than the bulk Debye length as a result of strong structural confinement.  相似文献   

12.
Scaling fully depleted SOI CMOS   总被引:2,自引:0,他引:2  
Quasi-two-dimensional (2-D) device analyses, 2-D numerical device simulations, and circuit simulations of nanoscale conventional, single-gate fully depleted (FD) silicon-on-insulator (SOI) CMOS are done to examine the scalability and performance potential of the technology. The quasi-2-D analyses, which can apply to double-gate devices as well, also provide a simple expression to estimate the effective channel length (L/sub eff/) of FD/SOI MOSFETs. The insightful results show that threshold-voltage control via channel doping and polysilicon gates is not a viable option for extremely scaled FD/SOI CMOS, and hence that undoped channels and metal gate(s) with tuned work function(s) must be employed. Quantitative as well as qualitative insights gained on the short-channel effects reveal the need for ultrathin films (t/sub Si/ < 10 nm) for L/sub eff/ < 50 nm. However, the implied manufacturing burden, compounded by effects of carrier-energy quantization for ultrathin t/sub Si/, forces a pragmatic limit on t/sub Si/ of about 5 nm, which in turn limits the scalability to L/sub eff/ = 25-30 nm. Unloaded CMOS-inverter ring-oscillator simulations, done with our process/physics-based compact model (UFDG) in SPICE3, show very good performance for L/sub eff/ = 35 nm, and suggest viable technology designs for low-power as well as high-performance applications. These simulations also reveal that moderate variations in t/sub Si/ can be tolerated, and that the energy quantization significantly influences the scaled-technology performance and hence must be properly accounted for in optimal FD/SOI MOSFET design.  相似文献   

13.
A simulation-based analysis of extremely scaled double-gate (DG) CMOS, emphasizing the effects of gate-induced drain leakage (GIDL) in DG MOSFETs, is described. Device and ring-oscillator simulations project an enormous performance potential for DG/CMOS, but also show how and why GIDL can be much more detrimental to off-state current in DG devices than in the single-gate counterparts. However, for asymmetrical (n+ and p+ polysilicon) gates, the analysis further shows that the GIDL effect can be controlled by tailoring the back (p+ -gate) oxide thickness, which implies design optimization regarding speed as well as static power in DG/CMOS circuits  相似文献   

14.
A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate(CSG) MOSFETs has been developed.Based on this a subthreshold drain current model has also been derived.This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model.The fringing gate capacitances taken into account are outer fringe capacitance,inner fringe capacitance,overlap capacitance,and sidewall capacitance.The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily.  相似文献   

15.
An analytic potential model for symmetric and asymmetric DG MOSFETs   总被引:1,自引:0,他引:1  
This paper presents an analytic potential model for long-channel symmetric and asymmetric double-gate (DG) MOSFETs. The model is derived rigorously from the exact solution to Poisson's and current continuity equation without the charge-sheet approximation. By preserving the proper physics, volume inversion in the subthreshold region is well accounted for in the model. The resulting analytic expressions of the drain-current, terminal charges, and capacitances for long-channel DG MOSFETs are continuous in all operation regions, i.e., linear, saturation, and subthreshold, making it suitable for compact modeling. As no fitting parameters are invoked throughout the derivation, the model is physical and predictive. All parameter formulas are validated by two-dimensional numerical simulations with excellent agreement. The model has been implemented in Simulation Program with Integrated Circuit Emphasis version 3 (SPICE3), and the feasibility is demonstrated by the transient analysis of sample CMOS circuits.  相似文献   

16.
Metal gate work function engineering on gate leakage of MOSFETs   总被引:1,自引:0,他引:1  
We present a systematic study of tunneling leakage current in metal gate MOSFETs and how it is affected by the work function of the metal gate electrodes. Physical models used for simulations were corroborated by experimental results from SiO/sub 2/ and HfO/sub 2/ gate dielectrics with TaN electrodes. In bulk CMOS results show that, at the same capacitance equivalent oxide thickness (CET) at inversion, replacing a poly-Si gate by metal reduces the gate leakage appreciably by one to two orders of magnitude due to the elimination of polysilicon gate depletion. It is also found that the work function /spl Phi//sub B/ of a metal gate affects tunneling characteristics in MOSFETs. It is particularly significant when the transistor is biased at accumulation. Specifically, the increase of /spl Phi//sub B/ reduces the gate-to-channel tunneling in off-biased n-FET and the use of a metal gate with midgap /spl Phi//sub B/ results in a significant reduction of gate to source/drain extension (SDE) tunneling in both n- and p-FETs. Compared to bulk FET, double gate (DG) FET has much lower off-state leakage due to the smaller gate to SDE tunneling. This reduction in off-state leakage can be as much as three orders of magnitude when high-/spl kappa/ gate dielectric is used. Finally, the benefits of employing metal gate DG structure in future CMOS scaling are discussed.  相似文献   

17.
A fuzzy framework based on an adaptive network fuzzy inference system(ANFIS) is proposed to evaluate the relative degradation of the basic subthreshold parameters due to hot-carrier effects for nanoscale thin-film double-gate(DG) MOSFETs.The effect of the channel length and thickness on the resulting degradation is addressed, and 2-D numerical simulations are used for the elaboration of the training database.Several membership function shapes are developed,and the best one in terms of accuracy is selected.The predicted results agree well with the 2-D numerical simulations and can be efficiently used to investigate the impact of the interface fixed charges and quantum confinement on nanoscale DG MOSFET subthreshold behavior.Therefore,the proposed ANFIS-based approach offers a simple and accurate technique to study nanoscale devices,including the hot-carrier and quantum effects.  相似文献   

18.
A precise modeling framework for short-channel nanoscale double-gate (DG) and gate-all-around (GAA) MOSFETs is presented. For the DG MOSFET, the modeling is based on a conformal mapping analysis of the potential distribution in the device body arising from the interelectrode capacitive coupling, combined with a self-consistent procedure to include the effects of the inversion charge. The DG interelectrode coupling, which dominates the subthreshold behavior of the device, can also be applied with a high degree of precision to the cylindrical GAA MOSFET by performing a simple geometric scaling transformation to account for the difference in gate control in the two devices. Near threshold, self-consistent procedures invoking Poisson's equation in combination with boundary conditions and suitable modeling expressions for the potential are applied to the two devices. In strong inversion, these solutions converge to those of the respective long-channel devices. The drain current is calculated as part of the self-consistent treatment. The results for both the electrostatics and the current are in excellent agreement with numerical simulations.  相似文献   

19.
Due to their excellent scalability and better immunity to short channel effects, double-gate (DG) MOSFETs are being earnestly assessed for CMOS applications beyond the 70 nm node of the SIA roadmap. However for channel lengths below 100 nm, DG MOSFETs still show considerable threshold voltage roll off and to overcome this effect, different gate or channel engineering techniques can be widely used. In this paper, the analog and RF performance of a single halo double gate MOSFET implemented with dual-material gate (DMG) technology is investigated with 2D device simulator. This novel structure shows better immunity to short-channel effects like DIBL and improved analog and RF performance. Moreover they exhibit better suppression of hot carrier effect and higher carrier transport efficiency than a single halo double gate MOSFET. The suitability of nanoscale single halo double gate MOSFETs with dual-material gate for circuit applications is examined by comparing the performance of a two stage cascode amplifier and a greater improvement is observed for single halo dual-material DG MOSFET compared to that of the single halo counterpart.  相似文献   

20.
As the channel length rapidly shrinks down to the nanoscale regime, the multiple gate MOSFETs structures have been considered as potential candidates for a CMOS device scaling due to its good short-channel-effects (SCEs) immunity. Therefore, in this work we investigate the scaling capability of Double Gate (DG) and Gate All Around (GAA) MOSFETs using an analytical analysis of the two dimensional Poisson equation in which the hot-carrier induced interface charge effects have been considered. Basing on this analysis, we have found that the degradation becomes more important when the channel length gets shorter, and the minimum surface potential position is affected by the hot-carrier induced localized interface charge density. Using this analysis, we have studied the scaling limits of DG and GAA MOSFETs and compared their performances including the hot-carrier effects. Our obtained results showed that the analytical analysis is in close agreement with the 2-D numerical simulation over a wide range of devices parameters. The proposed analytical approach may provide a theoretical basis and physical insights for multiple gate MOSFETs design including the hot-carrier degradation effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号