首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为解决LED散热问题,制作了一种一体化平板热管,搭建了平板热管实验台以研究此平板热管的传热性能,设计了模拟热源的保温方案.为了模拟LED芯片的发热,制作了模拟芯片热源,并对实验结果的不确定度进行分析.通过实验研究了加热功率、充液率和工质对平板热管传热性能的影响.实验结果表明:此平板热管具有良好的均温特性.在所测试的功率范围内,蒸发腔热阻随着功率的上升而降低.充液率方面,此平板热管的最佳充液率为40%.在测试的3种工质中,去离子水的传热效果最好.  相似文献   

2.
开发了一种微小矩形多槽道平板热管,并阐述了此种热管的结构、原理,推导出了其理论毛细极限。通过实验分析了工作温度、充液率、不同工作介质和倾角等因素对该热管传热性能的影响,得到冷凝段及蒸发段表面传热系数的实验关联式,可用于指导工程设计。研究表明,微小矩形多槽道平板热管具有高传热特性,在电子器件冷却等方面有良好的应用前景。  相似文献   

3.
为研究纳米流体工质的丝网热管的换热性能,制作了简单的丝网热管传热性能测试装置.实验采用SiO2纳米流体为工质,对在不同的充液率、浓度、热管倾角以及不同纳米颗粒粒径情况下丝网热管的热阻进行了研究.研究表明:丝网热管在充液率为60%、质量分数为1%、倾角为30°以及纳米粒径为30 nm时,换热性能处于最佳.研究结果为SiO2纳米流体工质在热管散热器中的运用提供理论依据.  相似文献   

4.
基于计算流体力学软件(CFD)建立重力热管(TPCT)数值模型,将数值结果与实验进行对比,进而探讨加热功率和充液率对重力热管传热性能的影响.将已发展的传热传质关系式转化为相应控制方程源项,通过自定义函数(UDF)实现重力热管内部相变过程中的传热传质过程,试图建立一个包含两相流与相变过程的重力热管CFD模型.结果表明:通过CFD数值方法可较好地模拟重力热管内部复杂的流动与传热过程;在加热功率为12~60 W内,重力热管的等效对流换热系数随加热功率增大而增大;在充液率为30%~60%范围内,重力热管的等效对流传热系数均随充液率增加而减小,当充液率为30%时,重力热管换热性能较好.  相似文献   

5.
本文着重研究热流密度q<9000W/m2的传热工况下重力热管内冷凝段的换热。通过实验确定了不同倾角、不同工质充液比及不同热流密度对热管传热性能的影响,并得到无因次量实验关联式  相似文献   

6.
热管是一种高效的传热设备,在节能、新能源的开发及利用等方面获得了日益广泛的应用.热管内工质的流动属有限空间的汽液两相流,流动极其复杂,是国内外比较关注的前沿学科,理论基础尚不完善,目前也只是通过高精的测试仪器采集数据分析结果,还无法从物理模型中得到统一的数学模型,所以仅用数值模拟的方法,所得到的结果很难具有一定的说服力.本文通过透明的玻璃热管可视化实验探索热管内部汽液两相流的流动特征、换热机理和启动时间,归纳出热管工质,充注率因素对热管传热性能的影响,研究发现采用低相变工质和30%~35%充液率更能节能,并运用于生产实际.  相似文献   

7.
热管是一种高效的电子设备传热元件。与纯金属相比,热管具有非常好的传热性能,而其吸液芯结构是决定其传热性能的关键。本研究在增大吸液芯孔隙率的同时不引入杂质并且不破坏吸液芯结构,以草酸铜作为造孔剂,研究了草酸铜的添加量对不同形状铜粉烧结过程中吸液芯的孔隙率与渗透率的影响,并研究了添加量与微热管的最大传热功率和温差的关系。实验结果表明:随着草酸铜含量的增加,吸液芯孔隙率增大,其最大传热功率及温差也变大;当添加草酸铜的含量相同时,不规则铜粉烧结热管的最大传热功率高于球形铜粉烧结热管,但其均温性与球形铜粉烧结热管相比较差;本文通过优化工质含量,研究出充液率与最大传热功率及温差的关系。当充液率在80%时,既能达到热管最大传热功率,温差也较低,是最佳的充液状态。  相似文献   

8.
热管是一种高效的电子设备传热元件。与纯金属相比,热管具有非常好的传热性能,而其吸液芯结构是决定其传热性能的关键。为了在增大吸液芯孔隙率的同时不引入杂质并且不破坏吸液芯结构,以草酸铜作为造孔剂,研究草酸铜的添加量对不同形状铜粉烧结过程中吸液芯的孔隙率与渗透率的影响,以及添加量与微热管的最大传热功率和温差的关系。实验结果表明:随着草酸铜含量的增加,吸液芯孔隙率增大,其最大传热功率及温差也变大;当添加草酸铜的含量相同时,不规则铜粉烧结热管的最大传热功率高于球形铜粉烧结热管,但其均温性与球形铜粉烧结热管相比较差;通过优化工质含量,得到了充液率与最大传热功率及温差的关系;当充液率在80%时,既能达到热管最大传热功率,温差也较低,是最佳的充液状态。  相似文献   

9.
本文进行了热管除湿系统的除湿性能实验研究,控制入口空气状态即空气干球温度、相对湿度和空气流量3个关键因素下进行除湿量测试,得到了热管除湿机单位功率除湿量随进口空气干球温度、相对湿度增加而增加,随着空气流量的增加,单位功率除湿量有最大值的试验结果.实验研究了热管充液率为0%、15%和30%工况下的热管除湿性能,发现热管充液率为0%、15%时的除湿量比充液率为30%时高36%~42%.  相似文献   

10.
碳纳米流体特性及其在重力热管内的传热   总被引:2,自引:0,他引:2  
采用阿拉伯胶辅助分散法制备了一种新型的纳米流体--碳纳米管 水纳米流体,并以其为工质在以铜为管壳的一种新型重力热管内进行了传热实验研究.制备和实验结果表明,碳纳米管 水纳米流体的导热系数比基液水约增加了30%~50%,导热能力明显增强;这种纳米流体黏度低,流动性好,制备过程简单,可用于大规模生产;纳米流体重力热管加热段沸腾换热弱化了纳米流体的稳定性对热管传热性能的影响,实现了纳米流体与重力热管的优势互补;以该纳米流体为工质的重力热管的内热阻比水小,并且随着传输功率的提高,热管总热阻逐渐减小,传热性能逐渐提高.  相似文献   

11.
总结了目前用于空调系统排风热回收的热管换热器类型. 通过一些仿真模拟及实际案例,分析了影响热管换热器热回收效率的重要因素,包括热管工质的选择、管芯结构、热管尺寸及放置角度、工质充液率等内因,以及新回风进风温度、风量比、迎面风速等外部因素.  相似文献   

12.
In this experiment,a four-turn oscillating heat pipe(OHP)is made of copper tube with an inner diameter of 1.3mm,and an outer diameter of 2.5mm.A series of experiments are performed to investigate the startup characteristics of OHP,and the effects of different working fluids(FS-39E microcapsule fluid,pure water,ethanol),different liquid filling rates(40%—80%)on the heat transport capability of OHP in vertical bottom heat mode.The results show that the startup of OHP is relative with liquid filling rate,therm...  相似文献   

13.
泵驱动回路热管能量回收装置的工作特性   总被引:2,自引:0,他引:2  
为了有效利用公共建筑空调系统排风的能量,降低新风处理能耗,设计出一种泵驱动回路热管能量回收装置.搭建实验系统,讨论该装置在8种运行工况、3种不同工质下的工作特性,分析工况和工质对其换热量、温度效率和性能系数等参数的影响.结果表明:该装置能够满足公共建筑换气能量回收的要求,具有显著的节能效果.室内外温差增大对其换热量和性能系数有利,对温度效率不利.该装置夏季工况的性能系数可达11.07,冬季工况的性能系数可达23.82;以R32为工质时,该装置的性能优于R22和R152a.  相似文献   

14.
热管技术研究、发展与工业应用   总被引:1,自引:0,他引:1  
介绍了一些热管技术在工程的典型应用,包括废热回收设备和工业过程设备.水碳钢热管技术在许多工程领域都得到了成功应用,如:用于废热回收、节能与环境保护的空气预热器和废热锅炉.液态金属高温热管技术在过程装备得到了广泛应用。高温热空气发生器和热管技术在化学反应器中也能发挥作用,如在氨合成塔中的应用.热管技术的成功应用是建立在热管技术的基础研究之上的,这些研究包括:热管内汽液两相流动与传热、热管传热极限、热管传热强化和热管材料相容性与热管的寿命等方面理论和实验研究.高效传热与传质的热管设备在许多工程应用领域将会得到越来越重要的应用.  相似文献   

15.
Thermal performance of heat pipe with different micro-groove structures   总被引:1,自引:1,他引:0  
Four kinds of micro heat pipe of trapezoidal groove wick structure with different numbers of grooves or aspect ratios were studied and compared about thermal transfer performances in order to optimize the manufacture of micro heat pipe with groove wick structure. The results show that these micro heat pipes have excellent performance in heat transfer; the equivalent thermal conductivity coefficient is two orders of magnitude compared with that of copper; the number and aspect ratio of grooves have a prominent effect on the performance of such thermal transfer. The optimum number of grooves is lower than 60 and the best aspect ratio is near to 1.5. The temperature and thermal transport rate are almost directly proportional relationship, but this relationship will be broken up suddenly when the critical heat flux is reached.  相似文献   

16.
热管中冷器的传热与阻力特性   总被引:1,自引:0,他引:1  
为了研究重力热管在车辆中冷器上的应用可行性,设计用于冷却高温增压空气的热管中冷器.选用水作为工作介质,在风洞实验台架上进行热管中冷器的传热和阻力性能实验.测试热管中冷器在不同冷侧空气流速、冷﹑热侧空气进口温差、热侧空气流量下的散热量和压力降,比较并分析测试结果.结果表明,热管中冷器具有良好的散热性能,在一定范围内可以满足高增压内燃机的散热要求.将实验结果与理论模型计算值进行比较,结果表明,实验值与理论计算值变化趋势吻合较好.  相似文献   

17.
不同体系对流传热膜系数测定的实验研究   总被引:1,自引:0,他引:1  
选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、乙醇水溶液蒸汽—空气传热系统,分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。确定了在相应条件下冷流体对流传热膜系数的关联式。普通管换热器对流传热膜系数的关联式:Nu=0.01473Re0.61Pr0.4;强化管换热器对流传热膜系数的关联式:Nu=0.0251Re0.821Pr0.4;其计算值与实验结果符合良好。此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。  相似文献   

18.
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux, which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop, the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle, the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases, with the increase of the bending angles and the bending position closer to the vapor section. However, the effects of bending radius can be ignored. The result agrees well with the predicted equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号