首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
无电容型LDO的研究现状与进展   总被引:3,自引:1,他引:2  
无电容型低压差线性稳压器(LDO)除具有低噪声和高精度的特点外,还具有便于SoC系统集成和低应用成本的优点.与传统LDO相比,无电容型LDO无法利用输出电容的ESR补偿零点,也无法使输出电容在负载电流瞬态变化时为其提供充放电电流,从而在稳定性和瞬态特性上遇到巨大挑战.分析讨论了无电容型LDO的设计挑战;回顾了无电容型LDO在提高稳定性和改善瞬态特性上的最新研究成果.  相似文献   

2.
A transient-enhanced output-capacitorless CMOS low-dropout voltage regulator (LDO) with high power supply rejection (PSR) is introduced for system-on-chip applications. In order to reduce external pin count and device area and be amenable to full integration, the large external capacitor used in the classical LDO design is eliminated and replaced with a much smaller 5.7?pF on-chip capacitor. High-gain folded-cascode stage, wideband common source stage, voltage subtractor stage and transient-enhanced circuit are designed altogether to realise circuit compensation and achieve good frequency and transient performances. A current-sensing and transient-enhanced circuit is utilised to reduce transient voltage dips effectively and efficiently drive different kinds of load capacitances. The active chip area of the proposed regulator is only 200?×?280?µm2. The simulation results under mixed-signal 0.18?µm 1P6M process show that this novel LDO's output voltage can recover within 1.7?µs (rising) and 2.41?µs (falling) under full load-current changes. The input voltage is ranged from 2 to 5?V for a load current 50?mA and an output voltage of 1.8?V. This novel LDO has wide unity-gain frequency stability and is stable for estimated equivalent parasitic capacitive loads from 0 to 100?pF. Moreover, it can achieve a PSR of ?78.5 and ?73?dB at 1 and 10?kHz, respectively.  相似文献   

3.
Fully integrated voltage regulators with fast transient response and small area overhead are in high demand for on-chip power management in modern SoCs. A fully on-chip low-dropout regulator (LDO) comprised of multiple feedback loops to tackle fast load transients is proposed, designed and simulated in 90?nm CMOS technology. The LDO also adopts an active frequency compensation scheme that only needs a small amount of compensation capacitors to ensure stability. Simulation results show that, by the synergy of those loops, the LDO improves load regulation accuracy to 3???V/mA with a 1.2?V input and 1?V output. For a 100?mA load current step with the rise/fall time of 100?ps, the LDO achieves maximum output voltage drop and overshoot of less than 95?mV when loaded by a 600?pF decoupling capacitor and consumes an average bias current of 408???A. The LDO also features a magnitude notch in both its PSRR and output impedance that provides better suppression upon the spectral components of the supply ripple and the load variation around the notch frequency. Monte Carlo simulations are performed to show that the LDO is robust to process and temperature variations as well as device mismatches. The total area of the LDO excluding the decoupling capacitor is about 0.005?mm2. Performance comparisons with existing solutions indicate significant improvements the proposed LDO achieves.  相似文献   

4.
In this paper, a new architecture of a fully integrated low-dropout voltage regulator (LDO) is presented. It is composed of hybrid architecture of NMOS/PMOS power transistors to relax stability requirements and enhance the transient response of the system. The LDO is capable of producing a stable output voltage of 1.1 V from 1.3 V single supply with recovery settling time about 680 nsec. It can supply current from 10 µA to 100 mA consuming quiescent current of 20.5 µA and 95 µA, respectively. It supports load capacitance from 0 to 50 pF with phase margin that increases from 43° at low load (10 µA) to 74° at high load (100 mA) and power supply rejection ratio (PSRR) less than −20 dB up to 100 kHz. The proposed LDO is designed in 130 nm CMOS technology and occupies an area of 0.11 mm2. Post layout simulations show better performance compared with other reported techniques.  相似文献   

5.
The design issues of a single-transistor-control (STC) low-drop-out (LDO) based on flipped voltage follower is discussed in this paper, in particular the feedback stability at different conditions of output capacitors, equivalent series resistances (ESRs) and load current. Based on the analysis, an STC LDO was implemented in a standard 0.35-mum MOS technology. It is proven experimentally that the LDO provides stable voltage regulation at a variety of output-capacitor/ESR conditions and is also stable in no output capacitor condition. The preset output voltage, minimum unregulated input voltage, maximum output current at a dropout voltage of 200 mV, ground current and active chip area are 1 V, 1.2 V, 50 mA, 95 muA, and 140 mum times 320 mum, respectively. The full-load transient response in the no output capacitor case is faster than a micro second and is about 300 ns.  相似文献   

6.
设计了一种基于0.25μm CMOS工艺的低功耗片内全集成型LDO线性稳压电路。电路采用由电阻电容反馈网络在LDO输出端引入零点,补偿误差放大器输出极点的方法,避免了为补偿LDO输出极点,而需要大电容或复杂补偿电路的要求。该方法电路结构简单,芯片占用面积小,无需片外电容。Spectre仿真结果表明:工作电压为2.5 V,电路在较宽的频率范围内,电源抑制比约为78 dB,负载电流由1 mA到满载100 mA变化时,相位裕度大于40°,LDO和带隙电压源的总静态电流为390μA。  相似文献   

7.
An ultra-low power output-capacitorless low-dropout (LDO) regulator with a slew-rate-enhanced (SRE)circuit is introduced.The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging (or discharging) the gate capacitor quickly.In addition,a buffer with ultra-low output impedance is presented to improve line and load regulations.This design is fabricated by SMIC 0.18 μm CMOS technology.Experimental results show that,the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA.The output current range is from 10 μA to 200 mA and the corresponding variation of output voltage is less than 40 mV.Moreover,the measured line regulation and load regulation are 15.38 mV/V and 0.4 mV/mA respectively.  相似文献   

8.
提出了LDO,其基于缓慢滚降式频率补偿方法,通过在电路中引入三个极零对(极零对的产生没有增加静态功耗),不仅克服了常规LDO不能使用低等效串联电阻、低成本陶瓷输出电容的缺点,而且确保了系统在整个负载和输入电压变化范围内稳定工作.由于LDO通常给高性能模拟电路供电,因此其输出电压精度至关重要;而该补偿方法能满足高环路增益、高单位增益带宽的设计要求,从而大幅提高LDO的精度.该LDO基于0.5μm CMOS工艺实现.后仿结果表明,即使在低压满负载条件下,其开环DC增益仍高于70dB,满载时单位增益带宽可达3MHz,线性调整率和负载调整率分别为27μV/V和3.78μV/mA,过冲和欠冲电压均小于30mV,负载电流为150mA时的漏失电压(dropout电压)仅为120mV.  相似文献   

9.
贾雪绒  王巍 《微电子学》2017,47(3):322-325
介绍了一种应用于DRAM芯片内部供电的新型低压差线性稳压器(LDO)。在传统LDO电路PMOS输出驱动管的栅端增加了一个开关电容电路,根据负载电流使能信号控制耦合电容的接入,使驱动管的栅端耦合到一个正向或者负向的电压脉冲,在负载电流急剧变化时能快速调整过驱动电压,以适应负载电流的变化。仿真结果显示,该电路有利于输出电压的快速稳定,恢复时间缩短了38%以上。采用45 nm DRAM 掩埋字线工艺进行流片。实测结果显示,该LDO输出电压恢复时间在10 ns以内。在DDR3-1600的数据传输速度下,DRAM芯片的数据输出眼图为280 ps,符合JEDEC标准。  相似文献   

10.
This paper presents a low-dropout regulator (LDO) for portable applications with an impedance-attenuated buffer for driving the pass device. Dynamically-biased shunt feedback is proposed in the buffer to lower its output resistance such that the pole at the gate of the pass device is pushed to high frequencies without dissipating large quiescent current. By employing the current-buffer compensation, only a single pole is realized within the regulation loop unity-gain bandwidth and over 65deg phase margin is achieved under the full range of the load current in the LDO. The LDO thus achieves stability without using any low-frequency zero. The maximum output-voltage variation can be minimized during load transients even if a small output capacitor is used. The LDO with the proposed impedance-attenuated buffer has been implemented in a 0.35-mum twin-well CMOS process. The proposed LDO dissipates 20-muA quiescent current at no-load condition and is able to deliver up to 200-mA load current. With a 1-muF output capacitor, the maximum transient output-voltage variation is within 3% of the output voltage with load step changes of 200 mA/100 ns.  相似文献   

11.
A full on-chip CMOS low-dropout(LDO) voltage regulator with high PSR is presented.Instead of relying on the zero generated by the load capacitor and its equivalent series resistance,the proposed LDO generates a zero by voltage-controlled current sources for stability.The compensating capacitor for the proposed scheme is only 0.18 pF,which is much smaller than the capacitor of the conventional compensation scheme.The full on-chip LDO was fabricated in commercial 0.35μm CMOS technology.The active chip area...  相似文献   

12.
李演明  来新泉  贾新章  曹玉  叶强 《电子学报》2009,37(5):1130-1135
 设计了一种具有快速瞬态响应能力的低漏失稳压器,利用提出的一种瞬态响应加速(Transient Response Enhancement,TRE)电路,有效地提高了稳压器的瞬态响应速度,而且瞬态响应速度的提高并不增加静态电流.设计的LDO电路采用0.5μm标准CMOS工艺投片验证,芯片面积为0.49mm2.该LDO空载下的静态电流仅23μA,最大带载200mA.在1μF输出电容、200mA/100ns负载阶跃变化时的最大瞬态输出电压变化量小于3.5%.  相似文献   

13.
A stable low dropout (LDO) voltage regulator topology for low equivalent series resistance (ESR) capacitive loads is presented. The proposed scheme generates a zero internally instead of relying on the zero generated by the load capacitor and its ESR combination for stability. It is demonstrated that this scheme realizes robust frequency compensation, facilitates the use of multilayer ceramic capacitors for the load of LDO regulators, and improves transient response and noise performance. Test results from a prototype fabricated in AMI 0.5-/spl mu/m CMOS technology provide the most important parameters of the regulator viz., ground current, load regulation, line regulation, output noise, and start-up time.  相似文献   

14.
A fully on-chip 1-μW fast-transient response capacitor-free low-dropout regulator (LDO) using adaptive output stage (AOS) is presented in this paper in standard 0.13-μm CMOS process. The AOS circuit is proposed to deliver extra four times of output current of the operational amplifier at medium to heavy load to extend the bandwidth of the LDO and enhance the slew rate at the gate of the power transistor. And the AOS circuit is shut off at light load to reduce the quiescent current and maintain the stability without requiring area-consuming on-chip capacitor. Meanwhile, the proposed AOS circuit introduces VOUT offset at medium to heavy load to counteract the VOUT drop, which is caused by ILOAD increase. Hence, transient performances of LDO and VOUT drop between light load and full load are improved significantly with 1.1-μA quiescent current at light load. From the post simulation results, the LDO regulates the output voltage at 0.7 V from a 0.9-V supply voltage with a 100-mA maximum load current. The undershoot, the overshoot and the recovery time of the proposed LDO with ILOAD switching from 50 μA to 100 mA in 1 μs are about 130 mV, 130 mV and 1.5 μs, respectively. And the VOUT drop between light load and full load reduces to 0.16 mV.  相似文献   

15.
为了解决无片外电容低压差线性稳压器(LDO)的瞬态响应性能较差的问题,采用跨导提高技术设计了一种高摆率的误差放大器.在误差放大器的基础上,通过电容将LDO的输出端耦合至电流镜构建瞬态增强电路,提升LDO的瞬态响应能力,且瞬态增强电路可以引入两个左半平面零点,改善环路的稳定性.同时,误差放大器采用动态偏置结构,进一步减小...  相似文献   

16.
The goal of internal frequency compensation of a low dropout voltage regulator (LDO) is the selection of a small-value, ESR-independent output capacitor. Cascode compensation formed by a common-gate transistor acting as a current buffer, an optional series resistor, and a compensation capacitor creates a dominant pole and a left-half-plane (LHP) zero, allowing adequate phase margin and stable LDO design. To this end, a 1.21?V output, 100?mA, 0.1?C10???F output capacitor, ESR-independent, low voltage LDO using cascode compensation with replica bias is designed and fabricated in a 0.5???m CMOS process with an area of 0.22?mm2. A line regulation of 0.05% V/V, load regulation of 0.001% V/mA and dropout voltage of 220?mV were measured. LDO-specific pole-zero analysis is detailed. In addition to this design, two improved transient response LDO architectures using cascode compensation with split-length transistors are also explored. A Power Good feature is discussed, which enables direct interface between the LDO and a micro-processor.  相似文献   

17.
In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC–DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC–DC converter has variable conversion ratios and synchronous controller that lets the DC–DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0–10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.  相似文献   

18.
交流提升与有源反馈补偿的无片外电容CMOS低压差稳压器   总被引:1,自引:1,他引:0  
A capacitor-free CMOS low-dropout (LDO) regulator for system-on-chip (SoC) applications is presented. By adopting AC-boosting and active-feedback frequency compensation (ACB-AFFC), the proposed LDO regulator, which is independent of an off-chip capacitor, provides high closed-loop stability. Moreover, a slew rate enhancement circuit is adopted to increase the slew rate and decrease the output voltage dips when the load current is suddenly switched from low to high. The LDO regulator is designed and fabricated in a 0.6 μm CMOS process. The active silicon area is only 770 × 472 μm2. Experimental results show that the total error of the output voltage due to line variation is less than ±0.197%. The load regulation is only 0.35 mV/mA when the load current changes from 0 to 100 mA.  相似文献   

19.
This paper presents a CMOS low quiescent current output-capacitorless low-dropout regulator (LDO) based on a high slew rate current mode transconductance amplifier (CTA) as error amplifier. Using local common-mode feedback (LCMFB) in the proposed CTA, the order of transfer characteristic of the circuit is increased. Therefore, the slew rate at the gate of pass transistor is enhanced. This improves the LDO load transient characteristic even at low quiescent current. The proposed LDO topology has been designed and post simulated in HSPICE in a 0.18 µm CMOS process to supply the load current between 0 and 100 mA. The dropout voltage of the LDO is set to 200 mV for 1.2–2 V input voltage. Post-layout simulation results reveal that the proposed LDO is stable without any internal compensation strategy and with on-chip output capacitor or lumped parasitic capacitances at the output node between 10 and 100 pF. The total quiescent current of the LDO including the current consumed by the reference buffer circuit is only 3.7 µA. A final benchmark comparison considering all relevant performance metrics is presented.  相似文献   

20.
 本文分析了传统大电流负载的LDO(Low-dropout Regulator)系统实现系统稳定性和瞬态响应提高的局限性,在此基础上,提出了一种片内集成的瞬态响应提高技术.此技术无需外挂电容和等效串联电阻(Equivalent Series Resistor,ESR),即能使系统在全负载范围内保持稳定性和良好的纹波抑制能力.仿真结果表明,系统空载时,静态电流为64μA,且最大能提供800mA的负载电流,1KHz时的电源抑制比达到-60dB,当负载电流以800mA/5μs跳变时,最大下冲电压为400mV,上冲电压为536mV,恢复时间分别只需6.7μs和12.8μs,版图面积约为0.64mm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号