首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The effects of dietary cholesterol on brain amyloid precursor protein (APP) processing were examined using an APP gene-targeted mouse, genetically humanized in the amyloid beta-peptide (Abeta) domain and expressing the Swedish familial Alzheimer's disease mutations. These mice express endogenous levels of APP holoprotein and abundant human Abeta. Increased dietary cholesterol led to significant reductions in brain levels of secreted APP derivatives, including sAPPalpha, sAPPbeta, Abeta1-40, and Abeta1-42, while having little to no effect on cell-associated species, including full-length APP and the COOH-terminal APP processing derivatives. The changes in levels of sAPP and Abeta in brain all were negatively correlated with serum cholesterol levels and levels of serum and brain apoE. These results demonstrate that secreted APP processing derivatives and Abeta can be modulated in the brain of an animal by diet and provide evidence that cholesterol plays a role in the modulation of APP processing in vivo. APP gene-targeted mice lacking apoE, also have high serum cholesterol levels but do not show alterations in APP processing, suggesting that effects of cholesterol on APP processing require the presence of apoE.  相似文献   

4.
The beta-amyloid protein (Abeta), the major component of the senile plaques found in Alzheimer brains, derives from a larger beta-amyloid precursor protein (APP). Alternative splicing of the APP gene yields three major APP messenger RNAs (mRNAs), which, in turn, give rise to the APP770, APP751, and APP695 protein isoforms. In this study we examined the effects of thyroid hormone on APP expression in N2a-beta neuroblastoma cells. T3 caused a significant increase in the APP770 mRNA band, in detriment of the APP695 mRNA, which was proportionately reduced. In agreement with these results, T3 markedly altered the relative ratio of intracellular APP isoforms, increasing the amount of APP770 and causing an equivalent reduction of the immature APP695 isoform. In accordance with these results, the soluble APP695-derived form was specifically reduced in the culture medium obtained from T3-treated cells. In contrast, the increase in intracellular APP770 was not followed by an enhanced release of soluble derivatives of this isoform. These results suggest that T3 regulates not only APP gene splicing, but also the processing and secretion of the APP peptides. According to our results, thyroid hormone might play a role in the development of Alzheimer's disease by modulating the intracellular and extracellular contents of APP isoforms.  相似文献   

5.
Overexpression and altered metabolism of amyloid precursor protein (APP) resulting in increased 4 kDa amyloid beta peptide (Abeta) production are believed to play a major role in Alzheimer's disease (AD). Therefore, reducing Abeta production in the brain is a possible therapy for AD. Because AD pathology is fairly restricted to the CNS of humans, we have established human cerebral primary neuron cultures to investigate the metabolism of APP. In many cell lines and rodent primary neuron cultures, phorbol ester activation of protein kinase C (PKC) increases the release of the secreted large N-terminal fragment of amyloid precursor protein (sAPP) and decreases Abeta release (; ; ). In contrast, we find that PKC activation in human primary neurons increases the rate of sAPP release and the production of APP C-terminal fragments and 4 kDa Abeta. Our results indicate species- and cell type-specific regulation of APP metabolism. Therefore, our results curtail the use of PKC activators in controlling human brain Abeta levels.  相似文献   

6.
The amyloid protein, Abeta, which accumulates in the brains of Alzheimer patients, is derived by proteolysis of the amyloid protein precursor (APP). APP can undergo endoproteolytic processing at three sites, one at the amino terminus of the Abeta domain (beta-cleavage), one within the Abeta domain (alpha-cleavage), and one at the carboxyl terminus of the Abeta domain (gamma-cleavage). The enzymes responsible for these activities have not been unambiguously identified. By the use of gene disruption (knockout), we now demonstrate that TACE (tumor necrosis factor alpha converting enzyme), a member of the ADAM family (a disintegrin and metalloprotease-family) of proteases, plays a central role in regulated alpha-cleavage of APP. Our data suggest that TACE may be the alpha-secretase responsible for the majority of regulated alpha-cleavage in cultured cells. Furthermore, we show that inhibiting this enzyme affects both APP secretion and Abeta formation in cultured cells.  相似文献   

7.
Progressive cerebral deposition of the amyloid beta-protein (Abeta) is believed to play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The highly amyloidogenic 42-residue form of Abeta (Abeta42) is the first species to be deposited in both sporadic and familial AD. Mutations in two familial AD-linked genes, presenilins 1 (PS1) and 2 (PS2), selectively increase the production of Abeta42 in cultured cells and the brains of transgenic mice, and gene deletion of PS1 shows that it is required for normal gamma-secretase cleavage of the beta-amyloid precursor protein (APP) to generate Abeta. To establish the subcellular localization of the PS1 regulation of APP processing to Abeta, fibroblasts from PS1 wild-type (wt) or knockout (KO) embryos as well as Chinese hamster ovary (CHO) cells stably transfected with wt or mutant PS1 were subjected to subcellular fractionation on discontinuous Iodixanol gradients. APP C-terminal fragments (CTF) were markedly increased in both endoplasmic reticulum- (ER-) and Golgi-rich fractions of fibroblasts from KO mice; moreover, similar increases were documented directly in KO brain tissue. No change in the subcellular distribution of full-length APP was detectable in fibroblasts lacking PS1. In CHO cells, a small portion of APP, principally the N-glycosylated isoform, formed complexes with PS1 in both ER- and Golgi-rich fractions, as detected by coimmunoprecipitation. When the same fractions were analyzed by enzyme-linked immunosorbent assays for Abetatotal and Abeta42, Abeta42 was the major Abeta species in the ER fraction (Abeta42:Abetatotal ratio 0.5-1.0), whereas absolute levels of both Abeta42 and Abeta40 were higher in the Golgi fraction and the Abeta42:Abetatoal ratio was 0.05-0.16 there. Mutant PS1 significantly increased Abeta42 levels in the Golgi fraction. Our results indicate PS1 and APP can interact in the ER and Golgi, where PS1 is required for proper gamma-secretase processing of APP CTFs, and that PS1 mutations augment Abeta42 levels principally in Golgi-like vesicles.  相似文献   

8.
9.
The characteristic features of a brain with Alzheimer disease (AD) include the presence of neuritic plaques composed of amyloid beta-protein (Abeta) and reductions in the levels of cholinergic markers. Neurotoxic responses to Abeta have been reported in vivo and in vitro, suggesting that the cholinergic deficit in AD brain may be secondary to the degeneration of cholinergic neurons caused by Abeta. However, it remains to be determined if Abeta contributes to the cholinergic deficit in AD brain by nontoxic effects. We examined the effects of synthetic Abeta peptides on the cholinergic properties of a mouse cell line, SN56, derived from basal forebrain cholinergic neurons. Abeta 1-42 and Abeta 1-28 reduced the acetylcholine (AcCho) content of the cells in a concentration-dependent fashion, whereas Abeta 1-16 was inactive. Maximal reductions of 43% and 33% were observed after a 48-h treatment with 100 nM of Abeta 1-42 and 50 pM of Abeta 1-28, respectively. Neither Abeta 1-28 nor Abeta 1-42 at a concentration of 100 nM and a treatment period of 2 weeks was toxic to the cells. Treatment of the cells with Abeta 25-28 (48 h; 100 nM) significantly decreased AcCho levels, suggesting that the sequence GSNK (aa 25-28) is responsible for the AcCho-reducing effect of Abeta. The reductions in AcCho levels caused by Abeta 1-42 and Abeta 1-28 were accompanied by proportional decreases in choline acetyltransferase activity. In contrast, acetylcholinesterase activity was unaltered, indicating that Abeta specifically reduces the synthesis of AcCho in SN56 cells. The reductions in AcCho content caused by Abeta 1-42 could be prevented by a cotreatment with all-trans-retinoic acid (10 nM), a compound previously shown to increase choline acetyltransferase mRNA expression in SN56 cells. These results demonstrate a nontoxic, suppressive effect of Abeta on AcCho synthesis, an action that may contribute to the cholinergic deficit in AD brain.  相似文献   

10.
Amyloid peptides of 39-43 amino acids (Abeta) are the major constituents of amyloid plaques present in the brains of Alzheimer's (AD) patients. Proteolytic processing of the amyloid precursor protein (APP) by the yet unidentified beta- and gamma-secretases leads to the generation of the amyloidogenic Abeta peptides. Recent data suggest that all of the known mutations leading to early onset familial AD alter the processing of APP such that increased amounts of the 42-amino acid form of Abeta are generated by a gamma-secretase activity. Identification of the beta- and/or gamma-secretases is a major goal of current AD research, as they are prime targets for therapeutic intervention in AD. It has been suggested that the sterol regulatory element-binding protein site 2 protease (S2P) may be identical to the long sought gamma-secretase. We have directly tested this hypothesis using over-expression of the S2P cDNA in cells expressing APP and by characterizing APP processing in mutant Chinese hamster ovary cells that are deficient in S2P activity and expression. The data demonstrate that S2P does not play an essential role in the generation or secretion of Abeta peptides from cells, thus it is unlikely to be a gamma-secretase.  相似文献   

11.
Variation at the APOE gene locus has been shown to affect the risk for Alzheimer's disease. To gain deeper insight into the postulated apoE-mediated amyloid formation, we have characterized the three common apoE isoforms (apoE2, apoE3, and apoE4) regarding their binding to amyloid precursor protein (APP). We employed the yeast two-hybrid system and co-immunoprecipitation experiments in cell culture supernatants of COS-1 cells, ectopically expressing apoE isoforms and APP751 holoprotein or a COOH-terminal Abeta deletion mutant protein, designated APPtrunc. We found that all three apoE isoforms were able to bind APP751 holoprotein in an Abeta-independent fashion. The interacting domains could be mapped to the NH2 termini of APP (amino acids 1-207) and apoE (amino acids 1-191). As a functional consequence of this novel APP751 ectodomain-mediated apoE binding, the secretion of soluble APP751 is differentially affected by distinct apoE isoforms in vitro, suggesting a new "chaperon-like" mechanism by which apoE isoforms may modulate APP metabolism and consequently the risk for Alzheimer's disease.  相似文献   

12.
We studied the role of the amyloid precursor protein (APP) in ischemic brain damage using transgenic mice overexpressing APP. The middle cerebral artery (MCA) was occluded in FVB/N mice expressing APP695.SWE (Swedish mutation) and in nontransgenic littermates. Infarct volume (cubic millimeters) was assessed 24 hr later in thionin-stained brain sections. The infarct produced by MCA occlusion was enlarged in the transgenics (+32 +/- 6%; n = 12; p < 0. 05; t test). Measurement of APP by ELISA revealed that, although relatively high levels of Abeta were present in the brain of the transgenics (Abeta1-40 = 80 +/- 19 pmol/g; n = 6), there were no differences between ischemic and nonischemic hemispheres (p > 0.05). The reduction in cerebral blood flow produced by MCA occlusion at the periphery of the ischemic territory was more pronounced in APP transgenics (-42 +/- 8%; n = 9) than in controls (-20 +/- 8%; n = 9). Furthermore, the vasodilatation produced by neocortical application of the endothelium-dependent vasodilator acetylcholine (10 microM) was reduced by 82 +/- 5% (n = 8; p < 0.05) in APP transgenics. The data demonstrate that APP overexpression increases the susceptibility of the brain to ischemic injury. The effect is likely to involve the Abeta-induced disturbance in endothelium-dependent vascular reactivity that leads to more severe ischemia in regions at risk for infarction. The cerebral vascular actions of peptides deriving from APP metabolism may play a role in the pathogenic effects of APP.  相似文献   

13.
In an attempt to elucidate the pathological implications of intracellular accumulation of the amyloid precursor protein (APP) in postmitotic neurons in vivo, we transferred APP695 cDNA into rat hippocampal neurons by using a replication-defective adenovirus vector. We first improved the efficiency of adenovirus-mediated gene transfer into neurons in vivo by using hypertonic mannitol. When a beta-galactosidase-expressing recombinant adenovirus suspended in 1 M mannitol was injected into a dorsal hippocampal region, a number of neurons in remote areas were positively stained, presumably owing to increased retrograde transport of the virus. When an APP695-expressing adenovirus was injected into the same site, part of the infected neurons in the hippocampal formation underwent severe degeneration in a few days, whereas astrocytes near the injection site showed no apparent degeneration. These degenerating neurons accumulated different epitopes of APP, and beta/A4 protein (Abeta)-immunoreactive materials were undetected in the extracellular space. A small number of degenerating neurons showed nuclear DNA fragmentation. Electron microscopic examinations demonstrated that degenerating neurons had shrunken perikarya along with synaptic abnormalities. Microglial cells/macrophages were often found in close proximity to degenerating neurons, and in some cases they phagocytosed these neurons. These results suggest that intracellular accumulation of wild-type APP695 causes a specific type of neuronal degeneration in vivo in the absence of extracellular Abeta deposition.  相似文献   

14.
The amyloid precursor protein (APP) plays a crucial role in the pathogenesis of Alzheimer's disease. During intracellular transport APP undergoes a series of proteolytic cleavages that lead to the release either of an amyloidogenic fragment called beta-amyloid (Abeta) or of a nonamyloidogenic secreted form consisting of the ectodomain of APP (APPsec). It is Abeta that accumulates in the brain lesions that are thought to cause the disease. By reducing the cellular cholesterol level of living hippocampal neurons by 70% with lovastatin and methyl-beta-cyclodextrin, we show that the formation of Abeta is completely inhibited while the generation of APPsec is unperturbed. This inhibition of Abeta formation is accompanied by increased solubility in the detergent Triton X-100 and is fully reversible by the readdition of cholesterol to previously depleted cells. Our results show that cholesterol is required for Abeta formation to occur and imply a link between cholesterol, Abeta, and Alzheimer's disease.  相似文献   

15.
16.
Recent studies of cellular amyloid precursor protein (APP) metabolism demonstrate a beta-/gamma-secretase pathway resident to the endoplasmic reticulum (ER)/Golgi resulting in intracellular generation of soluble APP (APPsbeta) and Abeta42 peptide. Thus, these intracellular compartments may be key sites of amyloidogenic APP metabolism and Alzheimer's disease pathogenesis. We hypothesized that the ER chaperone immunoglobulin binding protein (BiP/GRP78) binds to and facilitates correct folding of nascent APP. Metabolic labeling and immunoprecipitation of transiently transfected human embryonic kidney 293 cells demonstrated co-precipitation of APP with GRP78, revealing their transient interaction in the ER. Maturation of cellular APP was impaired by this interaction. Furthermore, the levels of APPs, Abeta40, and Abeta42 recovered in conditioned medium were lower compared with cells transfected with APP alone. Co-expression with APP of GRP78 T37G, an ATPase mutant, almost completely blocked cellular APP maturation as well as recovery of APPs, Abeta40, and Abeta42 in conditioned medium. The inhibitory effects of GRP78 and GRP78 T37G on Abeta40 and Abeta42 secretion were magnified by co-expression with the Swedish mutation of APP (K670N/M671L). Collectively, these data suggest a transient and direct interaction of GRP78 with APP in the ER that modulates intracellular APP maturation and processing and may facilitate its correct folding.  相似文献   

17.
Fibrillar amyloid deposits are defining pathological lesions in Alzheimer's disease brain and are thought to mediate neuronal death. Amyloid is composed primarily of a 39-42 amino acid protein fragment of the amyloid precursor protein (APP), called amyloid beta-protein (Abeta). Because deposition of fibrillar amyloid in vitro has been shown to be highly dependent on Abeta concentration, reducing the proteolytic release of Abeta is an attractive, potentially therapeutic target. Here, the turnover rate of brain Abeta has been determined to define treatment intervals over which a change in steady-state concentration of Abeta could be measured. Mice producing elevated levels of human Abeta were used to determine approximate turnover rates for Abeta and two of its precursors, C99 and APP. The t1/2 for brain Abeta was between 1.0 and 2.5 hr, whereas for C99, immature, and fully glycosylated forms of APP695 the approximate t1/2 values were 3, 3, and 7 hr, respectively. Given the rapid Abeta turnover rate, acute studies were designed using phorbol 12-myristate 13-acetate (PMA), which had been demonstrated previously to reduce Abeta secretion from cells in vitro via induction of protein kinase C (PKC) activity. Six hours after intracortical injection of PMA, Abeta levels were significantly reduced, as measured by both Abeta40- and Abeta42-selective ELISAs, returning to normal by 12 hr. An inactive structural analog of PMA, 4alpha-PMA, had no effect on brain Abeta levels. Among the secreted N-terminal APP fragments, APPbeta levels were significantly reduced by PMA treatment, whereas APPalpha levels were unchanged, in contrast to most cell culture studies. These results indicate that Abeta is rapidly turned over under normal conditions and support the therapeutic potential of elevating PKC activity for reduction of brain Abeta.  相似文献   

18.
Induction of the fibroblast growth factor-2 (FGF-2) gene and the consequent accumulation of FGF-2 in the nucleus are operative events in mitotic activation and hypertrophy of human astrocytes. In the brain, these events are associated with cellular degeneration and may reflect release of the FGF-2 gene from cell contact inhibition. We used cultures of human astrocytes to examine whether expression of FGF-2 is also controlled by soluble growth factors. Treatment of subconfluent astrocytes with interleukin-1beta, epidermal or platelet-derived growth factors, 18-kDa FGF-2, or serum or direct stimulation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate or adenylate cyclase with forskolin increased the levels of 18-, 22-, and 24-kDa FGF-2 isoforms and FGF-2 mRNA. Transfection of FGF-2 promoter-luciferase constructs identified a unique -555/-513 bp growth factor-responsive element (GFRE) that confers high basal promoter activity and activation by growth factors to a downstream promoter region. It also identified a separate region (-624/-556 bp) essential for PKC and cAMP stimulation. DNA-protein binding assays indicated that novel cis-acting elements and trans-acting factors mediate activation of the FGF-2 gene. Southwestern analysis identified 40-, 50-, 60-, and 100-kDa GFRE-binding proteins and 165-, 112-, and 90-kDa proteins that interacted with the PKC/cAMP-responsive region. The GFRE and the element essential for PKC and cAMP stimulation overlap with the region that mediates cell contact inhibition of the FGF-2 promoter. The results show a two-stage regulation of the FGF-2 gene: 1) an initial induction by reduced cell contact, and 2) further activation by growth factors or the PKC-signaling pathway. The hierarchic regulation of the FGF-2 gene promoter by cell density and growth factors or PKC reflects a two-stage activation of protein binding to the GFRE and to the PKC/cAMP-responsive region, respectively.  相似文献   

19.
Neuronal apoptosis is a suspected cause of neurodegeneration in Alzheimer's disease (AD). Increased levels of amyloid beta peptide (Abeta) induce neuronal apoptosis in vitro and in vivo. The underlying molecular mechanism of Abeta neurotoxicity is not clear. The normal concentration of Abeta in cerebrospinal fluid is 4 nM. We treated human neuron primary cultures with 100 nM amyloid beta peptides Abeta(1-40) and Abeta(1-42) and the control reverse peptide Abeta(40-1). We find that although little neuronal apoptosis is induced by either peptide after 3 d of treatment, Abeta(1-42) provokes a rapid and sustained downregulation of a key anti-apoptotic protein, bcl-2, whereas it increases levels of bax, a protein known to promote cell death. In contrast, the Abeta(1-40) downregulation of bcl-2 is gradual, although the levels are equivalent to those of Abeta(1-42)-treated neurons by 72 hr of treatment. Abeta(1-40) does not upregulate bax levels. The control, reverse peptide Abeta(40-1), does not affect either bcl-2 or bax protein levels. In addition, we found that the Abeta(1-40)- and Abeta(1-42)- but not Abeta(40-1)-treated neurons had increased vulnerability to low levels of oxidative stress. Therefore, we propose that although high physiological amounts of Abeta are not sufficient to induce apoptosis, Abeta depletes the neurons of one of its anti-apoptotic mechanisms. We hypothesize that increased Abeta in individuals renders the neurons vulnerable to age-dependent stress and neurodegeneration.  相似文献   

20.
The effects of radiation exposure in conjunction with oltipraz, a chemopreventive agent, on the expression of the gene encoding hepatic microsomal epoxide hydrolase (mEH) were examined in rats. Rats exposed to a single dose of 3 Gy gamma rays exhibited timerelated changes in the hepatic mEH mRNA level. Whereas the mEH mRNA level was transiently decreased at 3 and 8 h after irradiation, the mRNA levels were increased 3- to 4-fold at 15 to 48 h postirradiation, returning to the level in untreated animals at 72 h. Treatment of rats with oltipraz resulted in 1- to 19-fold increases in hepatic mEH mRNA levels 24 h post-treatment at doses of 5-200 mg/kg. Although treatment with oltipraz at a dose of 30 mg/kg affected the mEH mRNA level minimally (i.e. approximately 2-fold), 3 Gy whole-body irradiation along with oltipraz treatment resulted in a 9-fold increase in the mEH mRNA level at 24 h post-treatment. Treatment of animals with both oltipraz and 3 Gy gamma radiation for 3 consecutive days resulted in a 7-fold increase in mEH mRNA, showing that the increases in mEH mRNA were enhanced by the combination treatment. In rats irradiated with 3 Gy for 5 consecutive days, however, the mEH mRNA level failed to increase due to cell injury. Studies were further designed to assess the effects of 0.5 Gy ionizing radiation and concomitant oltipraz treatment. RNA blot analysis showed that mEH mRNA levels failed to be significantly altered at 3, 8, 15, 24 and 48 h after a single dose of 0.5 Gy. Nonetheless, exposure of animals to 0.5 Gy daily for 3 to 5 consecutive days caused a 3-fold elevation in the hepatic mEH mRNA level. Furthermore, treatment of animals with both oltipraz (30 mg/kg/day) and 0.5 Gy of gamma rays resulted in an enhanced elevation in the mEH mRNA level at 24 h post-treatment compared to the individual treatment, resulting in a 7-fold relative increase. The enhanced expression of hepatic mEH mRNA by 0.5 Gy gamma radiation and oltipraz was also observed after treatment for 3 to 5 days (8- to 6-fold relative increases). Western immunoblot analyses showed that hepatic microsomes produced from the rats treated with 0.5 Gy daily for 3 to 5 days resulted in a approximately 2-fold induction of hepatic mEH and that rats exposed to radiation in combination with oltipraz showed 3-fold increases in the liver mEH protein. Thus the relative increase in mEH mRNA levels was consistent with the expression of the protein. These results demonstrate that ionizing radiation causes alterations in hepatic mEH gene expression with the induction of the protein and that the mEH gene expression is enhanced by oltipraz treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号