首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
耦合求解了电磁场方程以及夹杂物守恒方程,考虑了夹杂物间的湍流碰撞以及斯托克斯碰撞,计算获得了拉速以及行波式电磁搅拌对结晶器内夹杂物分布的影响规律。结果表明,结晶器内夹杂物的运动规律与钢液的流动状态密切相关,拉速越大,钢液的浸入深度越深,则结晶器出口处夹杂物的数量越多,夹杂物的尺寸越小。施加行波式搅拌磁场可以使钢液流动加强,并减小钢液的浸入深度,有利于夹杂物的聚集长大上浮,结晶器内夹杂物的尺寸较大,但数量减少。因此,在连铸空心管坯内部施加搅拌磁场有利于去除钢中夹杂物,从而改善连铸空心管坯的质量。  相似文献   

2.
通过建立大方坯结晶器内钢液流动、传热、凝固和夹杂物运动耦合模型,研究了浸入式水口结构对结晶器内钢液流动和夹杂物运动的影响,比较了5种不同孔数的水口对应的夹杂物上浮、下沉以及坯壳吸附的比率和速率.研究结果表明:浸入式水口的结构很大程度上决定了结晶器内钢液的流动方式,进而决定了小颗粒夹杂物的运动轨迹.从水口底孔出来的射流中向上回流至液面部分的流股以及从侧孔出来的射流形成的螺旋上升的流股是促进夹杂物上浮的主要动力.只含侧孔的四孔型和双孔型水口在夹杂物去除方面能力最强,对于50 μm的小颗粒夹杂物去除率分别为25%和17%;而带底孔的水口(包括单孔型、三孔型和五孔型水口)去除率基本在10%以下.此外,对于含底孔的水口,铸坯内部夹杂物相对较多,而对于只含侧孔的水口,铸坯表面附近夹杂物相对较多.  相似文献   

3.
《铸造技术》2019,(7):734-739
采用数值模拟的方法,建立了140 mm×35 mm小薄板坯连铸过程的流场-温度场-溶质场-夹杂物的耦合数学模型,分析了拉速对结晶器内温度、溶质以及夹杂物分布的影响规律。结果表明,结晶器内溶质富集在固液两相区,在液相中逐渐降低,随着拉速增大,偏析最严重的区域向结晶器窄面靠近;夹杂物的体积分数、数量密度分布与结晶器内钢液的速度分布基本一致,在钢液流动方向上较高,在液相中不断降低。随着拉速增大,出口处夹杂物体积分数与数量密度变大,距离中心对称面越近,夹杂物体积分数与数量密度变化越显著。  相似文献   

4.
刘太楷  张小伟  王治国  邓康  任忠鸣 《连铸》2010,(2):13-17,43
为研究水口堵塞对结晶器流场以及夹杂物去除的影响,引入滑动水口模拟实现水口部分堵塞,在水口滑板的开启方向垂直于结晶器宽面的条件下,针对板坯连铸结晶器内流场及固体夹杂物的去除率进行数值模拟。结果显示:在滑板不完全开启时,水口内钢液呈明显偏流,在滑板下方区域中有回流区,并在水口底端形成单侧撞击流,使水口的出流钢液呈旋转状流态。随钢液注流进入结晶器的夹杂物颗粒的去除率(上浮率)随其粒径增大而升高,对粒径达到0.5 mm以上者可完全去除。模拟结果显示:滑板在最佳开启率时,可有效提高夹杂物颗粒的去除率。  相似文献   

5.
以结晶器表面的钢液流速和结晶器内的射流冲击深度作为参考指标,基于FLUENT对邯钢宽厚板坯连铸结晶器内流场进行数值模拟,研究该连铸机所用的A水口的性能及在该水口作用下的拉速、水口浸入深度对结晶器内流场的影响。结果表明:在A水口的作用下结晶器的表面流速大,射流冲击深度则较小,有较大的卷渣可能性;最大结晶器表面流速随着拉速的增大而逐渐增大,射流冲击深度则逐渐减小;结晶器表面流速随着水口浸入深度的增加而减小,射流冲击深度则增大;根据邯钢宽厚板坯连铸机的实际生产条件,在拉速较大时,应将A水口替换为平行水口;在使用A水口时,在适当降低拉速的同时,水口浸入深度也应适当增大。  相似文献   

6.
浸入式水口内吸附杆结构对夹杂物运动行为有直接影响,吸附杆壁面凹槽类型不同,夹杂物在其内部碰撞聚集的效果不同。通过水模拟试验,研究了浸入式水口内吸附杆凹槽类型对夹杂物碰撞聚集的影响。结果表明,夹杂物粒子在矩型凹槽内碰撞、聚集区主要集中在凹槽上部,在钩型凹槽内碰撞、聚集区主要集中在凹槽中下部。矩型凹槽较钩型凹槽更有利于夹杂物的聚集,即矩形凹槽内的夹杂物更容易与壁面碰撞,凹槽吸附夹杂物的能力更强。  相似文献   

7.
当FTSC薄板坯连铸机生产拉速提高到4~6 m/min时,浸入式水口通钢量增加,结晶器内流场扰动加剧,卷渣率提高,对生产顺行及铸坯质量都将产生重大影响。因此,为了解结晶器液面流场,根据实际生产情况,制作了1∶1的结晶器水物理模型,并通过Fluent软件对结晶器液面流场进行了数值模拟,研究了水口浸入深度及拉速对液面流场的影响。结果表明,在水模型物理试验中,水口浸入深度恒定为130 mm时,拉速在4~6 m/min范围内,结晶器表面流速随着拉速的提高而增大,其最大值范围为0.401~0.693 m/s;在6 m/min恒定拉速下,水口浸入深度在130~190 mm范围内,结晶器表面流速随着水口浸入深度的增加而减小,其最大值范围为0.503~0.690 m/s。在数值模拟中,水口浸入深度恒定为130 mm时,拉速在4~6 m/min范围内,结晶器表面流速随着拉速的提高而增大,其最大值范围为0.50~0.75 m/s;在6 m/min恒定拉速下,水口浸入深度在130~190 mm范围内,结晶器表面流速随着水口深入深度的增加而减小,其最大值范围为0.65~0.75 m/s。结晶器表面流速随着距水口中心距离的增大有先增加后减小的规律。  相似文献   

8.
IF钢铸坯表层大尺寸夹杂物分布对冷轧钢板表面质量有较大影响。采用ASPEX自动检测法与逐层刨削法研究了IF钢铸坯表层20 mm内中100 μm以上夹杂物的三维分布。铸坯表层20 mm内夹杂物共分成3类,气泡、氧化铝+气泡、块状氧化铝,数量比例分别为72%、26%和2%。结合水模型研究了结晶器内大尺寸夹杂物被凝固坯壳捕获行为,结果表明,在现有浇铸工况下结晶器内大尺寸夹杂物主要集中在上回流涡心处与浸入式水口下部等结晶器“死区”位置。消除结晶器内死区有助于减少铸坯表层大尺寸夹杂物,提高轧板表面质量。  相似文献   

9.
采用数值模拟的方法,建立了描述某厂结晶器内钢液流动的数学模型;用有限体积法求解,研究了结晶器内的钢液流动行为,详细分析了结晶器浸入式水口(SEN)插入深度、侧孔倾角和拉速对结晶器内钢液流场的影响.得出了适合该厂连铸工艺条件的浸入式水口形式和拉坯速度,即水口合理的出口倾角应为向下15°左右;在水口结构一定条件下,水口插入深度140~170mm比较适宜;合理的拉速应控制在1.4~2.0m/min.  相似文献   

10.
针对不锈钢板坯轧材经常出现的夹渣和表面翘皮现象,以实际生产条件为背景,对其连铸结晶器内钢液流动行为与水口工艺的相关性进行了试验研究。基于相似原理建立了相似比0.65∶1的物理模型,对不同浸入式水口结构和浇注工艺参数下的结晶器液面状态进行了流体动力学行为评价与比较优化。其中,主要研究了拉速、浸入深度、水口倾孔倾角(4°、8°、15°)、侧孔形状(矩形、倒梯形)等对结晶器内液面波动和表面流速的影响。结果表明,连铸拉速和水口浸入深度对液面波动的影响比水口结构显著;水口上倾角由4°增大到8°、15°,结晶器表面流速有减小趋势,但因流股冲击深度减小,导致在结晶器弯月面处的波高增大。综合表明,针对实际连铸拉速1.10 m/min的需要,其适宜的水口结构为倒梯形水口侧孔、上倾8°,其在水口浸入深度110~120 mm范围内,液面平均波高为1.1~1.2 mm,平均表面流速约为0.103 m/s。同时用数值模拟方法比较了优化方案和原方案,同样表明优化方案液面较平稳,剪切卷渣概率较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号