首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冯培勇  赵彦宏  张丽 《食品科学》2009,30(23):335-339
利用响应面法对黑曲霉产纤维素酶的发酵条件进行优化。首先通过二水平设计的Plackett-Burman 试验分析7 种因素对黑曲霉产纤维素酶活力的影响,确定发酵温度、发酵时间、装液量为影响酶活的重要因素。然后通过响应面分析得到最优条件:发酵温度31.02℃、发酵时间73.17h、装液量100.4ml。考虑实验的实际情况,确定最优条件为发酵温度31℃、发酵时间73h、装液量100ml。优化后纤维素酶活由267.81U/ml 提高到360.02U/ml,提高34.4%。  相似文献   

2.
为提高Aspergillus niger X-6 发酵生产菊粉酶的产率,运用Plackett-Burmen 方法对麸皮、菊粉、蛋白胨、酵母膏添加量和发酵时间、温度、pH 值、接种量8 个影响因素进行考察,筛选出麸皮添加量、发酵时间和pH值为3 个显著影响因素,然后采用Box-Behnken 中心组合和响应面法对上述3 个因素进行产酶条件的进一步优化,建立菊粉酶产率的二次多项式数学模型,并分析模型的有效性与因子间的交互作用。结果表明:黑曲霉发酵产菊粉酶的优化工艺参数为:麸皮添加量4.64%、发酵时间81.5h、pH6.0。在此条件下,产酶活力达20.42U/mL,与优化前相比提高了30.81%。  相似文献   

3.
以黑曲霉菌种作为菌源,利用深层发酵法生产内切型菊粉酶。通过测定发酵液酶活力,从20 株黑曲霉菌株筛选得到产菊粉酶活力最高的1 株黑曲霉菌株,酶活力为3.05 U/mL。通过单因素试验对最佳工艺条件进行研究,结果表明:培养基装液量为100 mL/250 mL、培养温度30 ℃、接种量1 cm2/250 mL、转速180 r/min、pH 5.0。在单因素试验的基础上,采用中心组合试验原理设计响应面法优化工艺条件,得到最佳工艺条件为:发酵液装液量 99 mL/250 mL、接种量0.99 cm2/250 mL、培养温度31 ℃、转速180 r/min、pH 5.0。在此条件下,测得内切型菊粉酶的酶活力为 6.43 U/mL,比初始酶活力提高了 111%。  相似文献   

4.
为了提高葡萄糖氧化酶的产量,通过响应面法对诱变后的黑曲霉菌株的发酵条件进行优化,首先利用Plackett-Burman设计筛选出对酶活影响最显著的因素:牛肉膏蛋白胨、吐温-60和磷酸氢二铵;继而用最陡爬坡实验逼近最大影响区域;最后利用Box-Behnken设计及其响应面分析确定最优的发酵培养基(g/L):蔗糖87.5,牛肉膏蛋白胨3.15,NH4NO31.88,(NH4)2HPO40.34,KH2PO40.25,Tw-60 30.47,玉米粉12.5,培养基优化后的发酵酶活为87.5 U/m L,与优化前(45.27 U/m L)相比提高了93.28%。在7 L发酵罐中对显著影响因素吐温-60的不同添加时间进行对比,确定对数期流加吐温-60可以显著提高发酵的酶活,发酵后酶活为92.88 U/m L。  相似文献   

5.
张辉 《酿酒科技》2011,(5):27-31
采用单因素试验和响应面法对黑曲霉(Aspergillus niger)HQ-1产羧甲基纤维素酶(CMC酶)的固体发酵条件进行了优化。结果表明,产酶的最佳发酵条件为:玉米秸秆粉6.0 g、麦麸6.0 g(、NH4)2SO4 1.5 g、KH2PO4 1.6 g、Mg-SO4.7H2O 0.8 g、含水量73.9%、起始pH3.93、培养温度和培养时间分别为34.1℃和96 h。优化后,菌株产CMC酶活力最高为317.103 U/g,比未优化的酶活力最高值(65.507 U/g)提高了3.84倍。  相似文献   

6.
采用全因子试验、最陡爬坡试验以及Box-Behnken试验设计对黑曲霉CU-1(Aspergillus niger CU-1)发酵生产低聚异麦芽糖培养基的主要成分进行优化。结果表明:最优培养基成分为:麸皮浸汁体积分数4%、玉米浆添加量19.67g/L、NaNO3添加量2.24g/L、木薯淀粉糖化液添加量250g/L,在该培养条件下,在3.6L发酵罐中进行验证,发酵液中异麦芽糖、潘糖和异麦芽三糖总产量达到37.4%,低聚异麦芽糖总产量高达83.1%,说明Box-Behnken试验设计法用于黑曲霉发酵生产低聚异麦芽糖培养基优化是可行的,数学模型的预测值与实验观察值相符。  相似文献   

7.
里氏木霉与黑曲霉混合发酵产纤维素酶的条件优化   总被引:2,自引:0,他引:2  
为提高纤维素酶酶解秸秆产糖效果,以碱性双氧水处理过的玉米秸秆为发酵基质,进行里氏木霉与黑曲霉混合发酵的研究。通过单因素试验确定黑曲霉延迟接种时间、里氏木霉与黑曲霉接种比例 、发酵时间和固液比4个因素的最优水平。在此基础上,采用Box-Behnken响应面设计对混合发酵产酶条件进行优化,获得最佳产酶条件:黑曲霉延迟接种时间 36h,里氏木霉与黑曲霉接种比例 5:1、发酵时间7d、固液比2:50(m/V)、吐温-80体积分数0.4%、pH 5.0和装液量50mL/250mL。此时,滤纸酶力(FPA)可达1.224 IU/mL,β-葡萄糖苷酶活力(β-GA)可达0.315 IU/mL。采用高效液相色谱法,对最佳条件下的纤维素酶酶解秸秆的水解液进行检测。结果表明,两菌株混合发酵较单菌株发酵的纤维素酶系更加完整,且降解木质纤维素类原料产可发酵性糖的能力增强。  相似文献   

8.
通过固体发酵培养基单因素研究,确定了三个影响单宁酶产率的关键因素,对氮源用量、五倍子用量、培养温度采用响应面法的中心旋转实验设计原理,进行三因素三水平的响应面分析,以获得最佳产单宁酶的培养基及培养条件组成。结果表明,固体发酵黑曲霉最佳产酶条件为:五倍子含量为9%;氮源添加量为2.3%;温度为32℃。在此条件下进行发酵产酶重复实验,酶活力为219.4U/mL。  相似文献   

9.
响应面法优化芽孢杆菌25-2产纤维素酶发酵条件   总被引:1,自引:0,他引:1  
为了提高芽孢杆菌25—2产纤维素酶的能力,利用响应面法对其发酵条件进行优化。通过.2-水平设计的Plackett—Burman实验分析6种因素对芽孢杆菌产纤维素酶活力的影响,筛选出发酵时间(X1)、发酵温度(X2)、初始pH值(X33个影响酶活的显著性因素。在此基础上采用最陡爬坡实验逼近最大响应区域,并结合中心组合实验以及响应面分析对影响纤维素酶产量的关键因素的最佳水平范围作进一步研究和讨论。建立了以纤维素酶活为响应值的二次回归方程模型,从中分析得到最优发酵条件:发酵时间21.7h,发酵温度46℃,初始pH值4.8。在以上优化条件下发酵,供试菌株的纤维素酶酶活达到28.626U/mL,较优化前提高了1.748倍,其实验值与预测值基本相符。  相似文献   

10.
胡耀辉  李成斌  刘俊梅 《食品科学》2012,33(23):171-174
为进一步提高糖蜜玉米浆发酵生产赤藓糖醇的产量,以高产赤藓糖醇耐高渗酵母RH-UV-L4-F9为出发菌株,采用响应面法优化发酵工艺参数。根据Box-Benhnken设计原理,在单因素试验基础上,采用三因素三水平响应面分析,确定最佳发酵工艺参数为:温度32.3℃、pH5.1、摇床转速176r/min。在此优化条件下赤藓糖醇产量达到166.89mg/mL,是初始条件下的1.2倍。  相似文献   

11.
12.
响应面法优化黑曲霉HQ-1产纤维素酶固体发酵条件   总被引:2,自引:1,他引:1  
采用单因素试验和响应面法对黑曲霉(Aspergillus niger) HQ-1产纤维素酶的固体发酵条件进行了优化并以滤纸酶活力作为响应值.首先通过单因素试验确定最适碳源为玉米秸秆粉/麦麸(1/1)及其最适含量为12.0g;最适氮源为(NH4)2SO4及其最适含量为1.5g.再利用Plackett-Burman设计筛选出影响滤纸酶活力的显著因素:含水量、培养温度和起始pH值.通过最陡爬坡试验逼近最大酶活力区域.最后用Box-Behnken设计及响应面分析确定产酶的最佳发酵条件为玉米秸秆粉6.0g、麦麸6.0g、(NH4) 2SO4 1.5g、KH2PO41.6g、MgSO4· 7H2O 0.8g、含水量73.5%、起始pH值为3.91、培养温度和培养时间分别为33.9℃和96h.经过优化,滤纸酶活力最高为59.432U/g,比未优化的酶活力最高值(13.511U/g)提高了3.40倍.  相似文献   

13.
为了充分综合利用香菇资源,该实验以黑曲霉(Aspergillus niger)为菌种,对香菇残次品进行液体发酵,在单因素试验的基础上,以羧甲基纤维素酶活作为响应值,采用响应面法对黑曲霉产纤维素酶的液体发酵培养基组成进行优化。结果表明,最佳发酵培养基组成为:香菇与水的比例为1∶9(g∶mL),麦芽糖添加量为0.9 g/L,蛋白胨添加量为0.7 g/L,酵母膏添加量为0.5 g/L。在此优化条件下,纤维素酶活比培养基优化前提高了22.5%。  相似文献   

14.
用响应面法对茶薪菇产纤维素酶的发酵条件进行了优化。首先用Plackett-Burman法筛选出三个影响较大的重要因素,分别为:碳源、初始pH值和发酵时间,然后进行最陡爬坡实验逼近最佳响应面区域,最后通过Box-Behnken设计,利用SAS软件进行回归分析,得到各因素的最佳水平。在优化的培养条件下, 纤维素酶的产量提高约45.26%。  相似文献   

15.
采用响应面方法对出芽短梗霉(Aureobasidium pullulans)生产短梗霉多糖的培养条件进行了优化。首先利用Plackett-Burman设计法研究了培养条件对响应值的影响程度,发现(NH_4)_2SO_4和K_2HPO_4的质量浓度对多糖产量的影响显著。然后利用最陡爬坡法逼近最大响应区域.最后在上升最高点处由中心组合试验和响应面分析确定其最优培养条件。并通过实验测得优化培养条件后的多糖产量为24.652 g/L,与预测值24.597 g/L非常接近,且比优化前多糖产量提高了28.4%。  相似文献   

16.
响应面法优化黑加仑果醋的发酵条件   总被引:1,自引:0,他引:1  
采用响应面分析法(RSM)优化黑加仑果醋发酵的工艺条件。在初始酒精体积分数、pH值、装液量、摇床转速4个因素的单因素试验基础上,采用Box-Behnken试验设计,通过响应面分析,对黑加仑果醋的发酵工艺条件进行优化。结果表明:黑加仑果醋发酵的最佳工艺条件为:初始酒精体积分数5.7%、pH4.5、装液量97mL/500mL、摇床转速126r/min,在此条件下的验证实验表明,黑加仑果醋的醋酸转化率为96.78%。黑加仑发酵型果醋呈玫瑰红色,果香浓郁,酸爽柔和。  相似文献   

17.
用响应面试验对一株单宁酶产生菌黑曲霉的固体发酵培养基进行优化,优化后的最佳发酵培养基组成为:在250mL三角瓶中装入5g麸皮和5mL由(蔗糖12g/L,KNO325b/L、玉米浆22.4g/L、五倍子65.1g/L、MgSO4 13.6g/L,CoCl2 0.2g/L、柠檬酸钠3g/L、NaCl2.5g/L)组成的盐溶液,在此条件下,发酵单宁酶酶活为13.54U/g,比优化前提高了1.82倍.  相似文献   

18.
李悦  薛桥丽  李世俊  王晶  胡永金 《食品科学》2014,35(17):137-145
在单因素试验的基础上,采用Plackett-Burman试验设计及响应面分析,利用Minitab软件,对纤维素酶高产菌小刺青霉(Penicillium spinulosum)16-7进行发酵工艺条件的优化。通过Plackett-Burman试验筛选出影响产酶的3 个主要因素,即稻草-麸皮(碳源)添加量、培养温度和培养时间。在此基础上通过最陡爬坡试验和响应面分析法进行回归分析。结果表明:当稻草-麸皮添加量为3.45 g/100 mL、培养温度为27.11 ℃和培养时间为146.27 h时,酶活力最高,此条件下滤纸酶酶活力预测值为132.53 U/mL。经过修正,选择稻草-麸皮添加量3.45 g/100 mL、培养温度27 ℃、培养时间146 h,此条件下测得羧甲基纤维素酶酶活力为387.58 U/mL、滤纸酶酶活力为128.86 U/mL,滤纸酶酶活力比优化前提高49.07%。  相似文献   

19.
利用响应面分析法对桑黄菌丝体生物量及产胞内多糖的液体发酵培养基进行优化,研究碳源、氮源、无机盐对桑黄菌丝生物量、胞内多糖含量及产量的影响。在单因素筛选试验的基础上,利用Box-Benhnken设计和响应面分析法对碳源、氮源和无机盐水平进行分析。结果表明,桑黄产胞内多糖的液体发酵培养基最佳组合为:玉米粉3.9%、麸皮2.2%、KH2PO4 0.20%、MgSO4 0.10%,在此条件下的验证实验表明,胞内多糖产量可达233.107mg/L。  相似文献   

20.
响应面法优化康宁木霉产纤维素酶固态发酵培养基   总被引:3,自引:0,他引:3       下载免费PDF全文
采用响应面法试验设计,对康宁木霉(Trichoderma konigii)固态发酵玉米皮生产纤维素酶的条件进行了优化,并建立了纤维素酶随麸皮添加量、物料初始水分质量分数和pH值变化的二次回归方程。利用该方程探讨了各因子对纤维素酶的影响。结果表明,各因子对纤维素酶的影响顺序为:物料初始水分质量分数>麸皮添加量>pH值,各因子间交互作用不显著。结合单因素实验,最终确定适宜的发酵条件为:麸皮添加量24.4 g/dL;营养液添加量:1.0 g/dL硫酸铵,0.05 g/dL磷酸二氢钾,0.1 g/dL硫酸镁,0.2 g/dL乳糖;初始水分质量分数58.6%;pH 5.5。在此条件下发酵120 h,滤纸酶活达到11.3 IU/g,较未优化前提高了2.9倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号