首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为研究水力割缝穿层钻孔缝槽直径和钻孔倾角对卸压增透效果的影响,以典型低透气煤层为背景,采用FLAC3D数值模拟方法对缝槽直径为1.1, 1.2, 1.3, 1.4, 1.5 m,钻孔倾角为50°、60°、70°、80°、90°的水力割缝模型卸压效果及应力场进行计算和对比分析。结果表明:割缝钻孔周围塑性破坏面积与缝槽直径正线性相关;割缝影响范围与缝槽直径成对数函数关系。割缝钻孔周围塑性破坏面积与钻孔倾角成正相关关系,在钻孔倾角为60°至70°时发生突变;割缝影响范围与钻孔倾角成幂函数关系;缝槽直径对割缝效果影响较大。根据研究结果进行了现场实践,现场数据验证了数值模拟结果,割缝钻孔的平均抽采瓦斯流量为常规钻孔的1.4~2.2倍,瓦斯抽采浓度为常规钻孔的3~4倍,瓦斯抽采纯量为常规钻孔的4.5~10.5倍。研究结果为穿层钻孔水力割缝参数的确定提供了理论依据。  相似文献   

2.
为了解决矿井瓦斯预抽中存在的问题,提高矿井瓦斯抽采利用效率,杜绝瓦斯灾害事故发生,以新集二矿瓦斯预抽工艺为研究背景,针对矿井采掘接替紧张、煤层透气性差、瓦斯抽采率低等技术难题,提出了超高压水力割缝与水力压裂联合增透技术。基于岩石力学与流体力学理论,分析了超高压水力割缝与水力压裂联合增透机理。并采用数字模拟方法研究确定了沿槽缝延伸方向,缝槽至煤体深部依次形成破碎区、塑性区、弹性区及原岩应力区,被冲割煤体受高压水射流剪、割应力作用影响,原岩应力区向煤体深部转移,煤体渗透率增大。得出水力压裂钻孔布置在超高压水力割缝形成的塑性区范围内能够达到较好的增透效果,并设计了超高压水力割缝与水力压裂一体化联合增透技术工艺:割缝水压为95~100 MPa,旋转水尾转速为40 r/min,割缝间距为1.0~1.2 m,单刀冲割时间为12 min;水力压裂钻孔直径为95 mm,并采用100 mm的钻孔洗扩装置冲、扩钻孔。通过在新集二矿2201采区220108底板巷2号上钻场的应用结果显示:超高压水力割缝与水力压裂协同增透技术能够明显改善煤层透气性,瓦斯抽采30 d以后,协同超高压水力割缝钻孔平均瓦斯抽采纯量为普通钻孔的10.3倍;协同水力压裂钻孔平均瓦斯抽采纯量为普通钻孔的6.4倍,且能够持续保证较高流量和浓度的瓦斯抽采效果。  相似文献   

3.
高压水射流割缝对煤体扰动影响规律研究及应用   总被引:2,自引:0,他引:2  
基于高压水射流割缝层内卸压增透技术,运用ANSYS软件建立模型,模拟了高压水射流割缝后不同割缝宽度条件下煤体位移、应力的变化,根据模拟结果分析了割缝煤体受扰动影响的变化规律;同时在平煤集团十三矿进行了现场的试验和应用,并对割缝钻孔和普通钻孔进行了单孔抽采流量考察。ANSYS模拟研究表明,割缝宽度不同造成周围煤体位移和应力显著变化,割缝宽度增大煤体受扰动影响范围增大,加大了煤体裂隙扩展,提高了割缝煤体的卸压效果;经现场试验和应用,煤体进行高压水射流割缝后,割缝钻孔起始瓦斯抽采量是普通钻孔的2.5倍,且在考察时间内割缝孔的抽采流量远大于普通孔,提高了瓦斯抽采效率。  相似文献   

4.
季飞 《中州煤炭》2024,(2):29-33+39
为解决松软煤层(f>0.2)超高压水力割缝期间缝槽发育难控制、易垮孔等问题,通过理论分析手段,分析了割缝缝槽周围煤体应力分布规律,获得了割缝缝槽周围煤体塑性区分布影响因素。研究了高压水射流破煤规律,得到了影响割缝缝槽形态的主要因素为割缝压力、喷嘴直径及煤体自身硬度。提出了基于松软煤层特点的超高压水力割缝缝槽形态控制技术,获得了控制松软煤层缝槽深度、宽度以及发育速度的关键参数为割缝压力、喷嘴直径及压力调节速度。通过现场应用表明,针对松软煤层其缝槽形态控制合理参数为:割缝喷嘴直径2.5~3.0 mm,割缝压力70 MPa,割缝调压间隔3~5 min。验证了松软煤层水力割缝缝槽形态控制技术适用性,可效提高松软煤层水力割缝施工成功率及安全性。  相似文献   

5.
张永将  黄振飞  李成成 《煤炭学报》2018,43(11):3016-3022
为解决深部矿井低透气性煤层瓦斯抽采难题,针对穿层钻孔提出了高压水射流环切割缝煤层自卸压增透技术。通过瓦斯流动理论分析普通钻孔及环割钻孔瓦斯流动模式,分别建立了普通钻孔及环割钻孔瓦斯流动微分方程,获得了高压水射流环切割缝自卸压技术改善煤层瓦斯流动机制;采用FLAC3D软件建模分析高压水射流割缝后钻孔周边煤体应力演化规律,基于煤体卸压程度及塑性区分布特征,确定了穿层钻孔合理化割缝参数;通过底板穿层钻孔高压水射流环切割缝技术现场考察,环切割缝后煤层变形量达到0.136%,煤层透气性系数较原始状态提高了42倍,瓦斯抽采纯量相较普通钻孔提高3.44~5.32倍,同等条件下煤层抽采半径提高了1倍以上。理论研究与现场试验均表明,采用高压水射流切割在煤层内部形成环形缝槽,能有效改善钻孔煤体应力状态,增加煤层渗透性,提高瓦斯抽采效率。  相似文献   

6.
采用FLAC软件建立了煤层中钻孔和割缝槽的二维模型,并对钻孔直径为90 mm,缝槽宽度为1 400 mm、高度为20 mm的条件进行了卸压增透效果模拟,同时得到其相应的应力云图。对煤层中缝槽上方不同位置的应力进行了分析,经分析可知:单个钻孔的割缝对煤体卸压效果与煤体距离缝槽的位置远近有关,位置越远,割缝效果越降低;多孔割缝所引起的相互作用会使得煤体的卸压范围扩大,造成的裂隙也更多,更有利于整体提高煤层透气性。根据分析结果,现场进行了水力割缝实验,得到了较好的实验效果。  相似文献   

7.
为了解决由于水力割缝压力、喷嘴大小、割缝时间等参数的选取不当导致煤层割缝深度浅、割缝后煤体卸压增透效果不理想、割缝作业期间钻孔憋孔、堵孔等问题,提出了超高压水力割缝精准控制技术,分析了割缝缝槽宽度、深度控制,割缝落煤速度控制,以及割缝区域效果控制,集成开发了ZGF-100(A)型超高压水力割缝装置,并进行了精准控制割缝现场应用试验。结果表明:采用超高压水力割缝精准控制技术对煤层进行割缝后,缝槽等效半径约为1.02~1.58 m,割缝钻孔平均抽采瓦斯纯量较普通对比钻孔增大约2倍,割缝钻孔抽采半径较对比钻孔增大1倍左右。  相似文献   

8.
穿层钻孔高压旋转水射流割缝增透防突技术研究与应用   总被引:1,自引:0,他引:1  
为了解决高瓦斯突出煤层巷道掘进过程中的煤与瓦斯突出问题,开发了将钻机钻进与射流割缝技术有机结合的穿层钻孔高压旋转水射流割缝增透防突技术。采用数值模拟的方法对比分析了钻孔和射流缝槽卸压效果,研究结果表明:割缝卸压比单纯钻孔卸压要优越很多,割缝缝槽破坏了钻孔周围的"瓶颈效应",多个割缝钻孔形成的裂隙相互导通,煤体透气性增大,促进瓦斯释放。工业性试验结果表明本卸压增透技术效果明显,瓦斯抽采流量、煤体扰动体积都有较大幅度增加,提高了瓦斯抽采效率。  相似文献   

9.
为解决碎软低渗煤层掘进工作面瓦斯治理难题,采用数值模拟和现场工业性试验的方法对割缝卸压致裂技术的作用原理以及在碎软低渗煤层的适用性进行了研究。数值模拟表明:水力割缝使缝槽周围的煤岩体卸压,应力转移,消除了应力集中区,有利于煤层卸压增透;现场试验结果表明:割缝深度、宽度分别可达850、43 mm,割缝卸压钻孔的抽采浓度、纯量分别提高至普通钻孔的6.7、10.1倍,割缝卸压致裂后煤体的突出危险性大幅降低约52.71%,水平割缝钻孔与垂直割缝钻孔相间布置的方式能够保证主裂缝的稳定保持。  相似文献   

10.
研究探索了水力割缝使钻孔周围煤体中的瓦斯由单向的径向流动变为径向和轴向双向流动,通过对扰动煤体的割缝宽度、平均单孔瓦斯抽采纯量、抽采半径的考察,分析了水力割缝技术和钻孔抽采技术的数据,得出了平均单孔抽采效果提高约3倍的结论。  相似文献   

11.
翟成  李全贵  孙臣  倪冠华  杨威 《煤炭学报》2012,37(9):1431-1436
分析了煤矿井下松软突出煤层钻孔失稳变形机理,指出巷道围岩应力和钻孔二次应力是煤层施工压裂钻孔后孔壁弱结构易产生破坏失稳、易塌孔和成孔难的主要根源。提出了一种有效的区域固化成孔方法,模拟分析了松软煤层和采用高强度材料固化后钻孔周围应力场和位移变化。结果表明:松软煤层中钻孔位移变形量和塑性区范围大,钻孔易发生失稳破坏;对封孔段采取固化成孔措施后,浆液渗透填充到煤岩体的裂隙中,起到加固、充填密实裂隙作用,增强孔壁围岩的强度,钻孔变形量和塑性区范围减小,有效防止了钻孔发生失稳破坏,提高了成孔率。  相似文献   

12.
刘海瑞  房新亮 《中州煤炭》2018,(5):36-40,45
针对车集煤矿2309工作面煤层瓦斯含量较高、煤层透气性较差等问题,采用Origin数值分析,对2309工作面切眼两侧顺层钻孔内瓦斯浓度变化规律及2309工作面切眼两侧卸压带宽度进行了研究。研究得出:2309工作面切眼卸压带内宽度自巷道左帮开始为0~12.7 m,应力集中带位于12.2~16.7 m,原始应力区为大于16.7 m。因此,2309工作面向前掘进时进尺不大于12.7 m,且对本煤层施工的顺层钻孔封孔长度不小于12.7 m,才能够有效保证钻孔的抽采效果;同时根据钻孔瓦斯浓度衰减规律,要求顺层钻孔在封孔结束后30 d内必须保证抽采负压,确保钻孔的抽采效果。研究为矿井的瓦斯抽采和巷道掘进速度提供技术支撑,有效保证了突出煤层瓦斯防治的治理水平。  相似文献   

13.
孙振军 《中州煤炭》2019,(10):30-32,36
为了研究煤层瓦斯运移规律,确保矿井的安全生产,采用FLAC和Fluent数值模拟相结合的方法,分析了多孔介质瓦斯运移特征,研究了回采工作面瓦斯来源,主要由开采层瓦斯涌出和邻近层瓦斯涌出2部分组成,得到了煤层初始瓦斯含量与残存量的关系以及回采工作面瓦斯涌出量预测结果,模拟分析了不同钻孔直径下的周围煤体塑性区分布以及不同钻孔直径下抽采钻孔抽采影响范围。研究为实现煤与瓦斯共采提供了借鉴。  相似文献   

14.
为探索沟谷地形下煤炭资源开采覆岩导水裂隙发育规律,利用FLAC软件建立了沟谷地下煤层开采数值模拟模型,研究了煤层至沟谷之间不同垂直距离的覆岩导水裂隙发育规律。研究结果表明:随着煤层至沟谷垂直距离的增加,沟谷底塑性区高度变化不大,约8 m,而煤层上覆塑性区高度随之增加,当煤层至沟谷垂直距离为25、35、45、55、65 m时,其煤层上覆塑性区高度分别为14.5、14.9、15.6、16.1、16.5 m;覆岩有效隔水厚度随着煤层至沟谷垂直距离的增加而增加,煤层至沟谷垂直距离愈大,则覆岩与沟谷地段越不容易形成贯通导水裂隙。  相似文献   

15.
杨樱花  徐影  刘卫娟 《中州煤炭》2021,(10):128-135
以勘查区地质特征为基础,分析了煤层埋深、煤层厚度、煤层含气量、甲烷风化带、渗透率、煤体结构等煤层气赋存特征,为参数井与排采井设计提供了设计依据,根据井位部署原则,对参数+排采试验井进行了选位及选型,然后设计了钻井工程,煤层气抽采试验井采用大位移定向套管射孔完井,先进行直井钻井,一开下套管固井、二开钻穿煤层,然后三开进行定向井施工,钻穿煤层30 m完钻,下套管固井,水泥返至地面。并分析了井身结构、井身质量要求、钻井主要设备及钻具组合、钻井液方案及井控技术与煤储层保护要求。研究为煤层气区块的定量化排采提供技术支持。  相似文献   

16.
张建利  祁乐 《中州煤炭》2019,(10):15-20,24
为消除鹤煤三矿采煤工作面瓦斯突出危险,在已有相关理论研究的基础上,建立了注水情形下煤层破坏的流固耦合瓦斯抽采模型,详细阐述了煤层破坏、自由水运移、瓦斯压力变化三者耦合作用关系,分析了裂隙自由水运移影响下注水钻孔塑性区变化过程。模拟结果表明:外界自由水的注入对煤层破坏效果显著。首先随着自由水的注入,扩大了钻孔塑性破坏区范围,降低了自由水润湿区域内煤层弹性模量等参数,促进了自由水在裂隙内的运移。其次,伴随自由水压力的升高,自由水逐渐进入煤层深部,提高了裂隙空间内自由水饱和度,抑制了煤层内瓦斯解吸、扩散过程,减少了瓦斯的释放。通过现场实践表明,两者变化趋势一致,因此该模型可用于瓦斯灾害治理。  相似文献   

17.
我国大部分矿区煤层透气性偏低,煤层气开发和井下瓦斯抽采难度较大。水射流技术目前被应用于煤层增透,包括水力冲孔、水力扩孔和水力割缝。以山西晋煤集团赵庄矿为例,对赵庄矿北翼回风巷3号煤层进行水力扩孔技术试验,结果显示:水力扩孔对赵庄矿煤层具有较好的增透作用,水力扩孔钻孔后瓦斯流量是未扩孔时的8~32倍,在不同程度上提高了瓦斯的抽采效率。  相似文献   

18.
为准确获得超高压水力割缝与水力压裂联合作用下的钻孔塑性区分布规律,基于统一强度理论,考虑煤体塑性软化和中间主应力,建立了钻孔在割压联合作用下的力学模型,推导出钻孔塑性区范围表达式,并通过算例分析了相关参数对钻孔塑性区的影响规律.研究结果表明:采用割压联合技术后,钻孔塑性区半径随着中间主应力系数的增大几乎保持不变,随着软...  相似文献   

19.
陈跃朋 《中州煤炭》2018,(3):164-169
确定巷间煤柱合理尺寸是保证留底煤掘进双巷布置大采高工作面安全、高产与高效的关键所在。以某矿122106大采高工作面沿底掘进胶运巷和辅运巷之间的护巷煤柱为工程背景,对工作面生产地质条件展开现场调研,同时原位测试巷道围岩地质力学参数。基于上述原始数据理论,估算出煤柱极限强度与合理的煤柱宽度范围,通过数值试验研究手段,分析初步选定宽度煤柱条件下,二次回采阶段巷道围岩及煤柱内部应力、位移和塑性破坏特征。结果表明:煤柱的极限强度为50.48 MPa,合理的煤柱宽度为19.24~29.28 m。煤柱宽度20 m时,煤柱内塑性区是2个独立的区域;当煤柱宽度达到一定程度后,接续面回采对上个工作面侧煤柱应力影响较小,主要是对本侧煤柱影响较大;靠近煤柱侧顶板和帮部变形较大,垂直位移最大值集中在巷道肩角位置,顶板出现不均匀下沉;煤柱核区内垂直应力均小于其极限强度,能保证稳定;煤柱最大垂直应力集中在两侧,靠近采空区的位置,煤柱中部存在较明显的应力下降区域。  相似文献   

20.
王振军  邱晔 《中州煤炭》2018,(12):21-24
为了对钻孔变形特征及围岩稳定性进行研究,采用FLAC3D数值模拟软件,建立了卸压开采数值模型,采用多维耦合数值模拟方法,研究了开采煤层顶板垂直应力随工作面推进的运移规律以及钻孔的挤压安全系数分布规律和剪切滑移量分布规律,分析了钻孔破坏的影响特征。研究得出:随着工作面的开采,上覆煤层产生了同步的位移,且岩层移动范围比下层煤开采范围大;随着开孔位置距离煤层顶板的偏移,当钻孔避开了顶板5~11 m挤压失稳区,钻孔挤压破坏危险区域也相对随之缩小,提高了钻孔开孔位置高度,有效减少了钻孔危险区范围。研究为钻孔的合理布置提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号