首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
以潞安环能股份公司常村煤矿S3-9综放工作面为研究对象,针对高瓦斯工作面高强度开采条件下瓦斯经常超限的问题,采用理论分析和现场观测的方法确定裂隙带高度和高位抽采钻孔设计参数,并进行现场效果检测,结果表明:该工作面采空区冒落带高度为21.3 m,裂隙带范围为21.3~41.2 m;确定回风巷高位钻孔终孔位置为:水平方向距回风巷里帮30.8~38.1 m,垂直方向距煤层顶板19.8~39.6 m;可提高回风巷高位钻孔的抽采负压,并适当扩大钻孔直径,以增加钻孔抽采瓦斯量。  相似文献   

2.
为了对高瓦斯工作面采空区抽采钻场进行设计,使采空区及工作面上隅角瓦斯得到有效控制,通过数值模拟分析了采场覆岩结构及裂隙发育规律;根据模拟结果利用实验室试验分析了抽采钻孔在不同位置时采空区瓦斯的运移规律,得出终孔位置距煤层顶板上方30m左右,距回风巷水平距离10~20m时抽采效果最佳;且终孔高度应根据工作面覆岩结构形态有所区别,靠近回风巷的钻孔高度应控制在规则冒落带上部,靠近工作面中部的钻孔应布置在裂隙带内。  相似文献   

3.
《煤》2015,(12):56-58
通过对高河煤矿E1305工作面布置高抽巷及高位裂隙带钻孔进行瓦斯抽放试验,结果表明顶板岩石水平巷道合理层位的选择,对于采空区瓦斯的抽放效果起着决定性的作用。高抽巷应布置在顶板裂隙的中下部采动裂隙比较发育的范围内,才能达到理想效果。针对高河煤矿3号煤层瓦斯抽采现状,应当将高抽巷布置在3号煤层顶板上方35~45 m层位处,距回风巷水平距离为65~86 m处。高抽巷的合理布置可以有效提高瓦斯抽采利用效率,对消除高河煤矿瓦斯突出、保障矿井安全生产提供了必要的技术支持。为类似矿井瓦斯抽采提供了参考依据。  相似文献   

4.
采空区顶板高位走向长钻孔高效抽采瓦斯机理研究   总被引:4,自引:0,他引:4  
为了提高采空区顶板高位走向长钻孔瓦斯抽采效率,消除工作面上隅角瓦斯超限事故,以山西华晋吉宁煤业有限责任公司2102综采工作面为研究对象,采用数值模拟、理论分析与现场试验相结合的方法,利用3DEC软件模拟计算2102综采工作面回采期间采空区顶板裂隙场演化过程,根据裂隙场、应力场和应变场分布模拟结果在沿工作面推进方向上划分采空区顶板裂隙加强区范围与压实区范围,工作面推进期间煤层顶板在时间上先后经历裂隙加强区和重新压实区,处于裂隙加强区的钻孔部分为钻孔高效抽采作用区域,钻孔高效抽采段长度与钻孔高效抽采段裂隙发育程度共同决定高位走向长钻孔抽采效率,揭示了采空区顶板高位走向长钻孔高效抽采瓦斯作用机制;在此基础上,在采空区顶板裂隙带高度范围内布置多个高位试验钻孔,进行钻孔瓦斯抽采效果考察,研究结果表明:在保证高位钻孔布置于回风巷内侧顶板裂隙带前提下,最佳布孔层位为距煤层底板60 m左右,同时在高位试验钻孔作用下,上隅角瓦斯体积分数最大值由1.1%降低至0.6%,说明根据回风巷内侧采空区顶板裂隙带高度范围,布置高位走向长钻孔能显著降低上隅角瓦斯浓度。  相似文献   

5.
为提高瓦斯抽采率,基于采场围岩裂隙发育特征及瓦斯流动规律,采用UDEC数值模拟软件模拟祁南煤矿342工作面在推进时的覆岩裂隙发育规律,优化工作面顶板高位钻孔设计方案。研究结果表明:当工作面推进速度5 m/d时,裂隙发育和瓦斯积聚区距煤层顶板12~22 m,在高位钻孔的层位控制范围,高位钻孔倾向控制范围优化为距回风巷9~36 m,钻场间钻孔的压茬距离35 m。祁南煤矿342工作面顶板高位钻孔按优化方案设计施工,单孔最大瓦斯抽采体积分数达84%,高位钻孔瓦斯抽采率达50%以上,工作面回风流的瓦斯体积分数控制在0.6%以下,保证了工作面的安全开采。  相似文献   

6.
 七台河新立矿区具有煤层薄、透气性差、煤坚固性系数小、瓦斯含量高等特点,同时煤层群具有分组性,各组内煤层间距较小。为解决邻近层瓦斯涌出量大、顺层钻孔施工难度大、本煤层抽放效果差,回采工作面上隅角和回风流中瓦斯浓度容易超限等难题,提出了顶板高位近水平长钻孔瓦斯抽采技术,构建了新立矿区近距离薄煤层群煤与瓦斯共采技术体系,并在新立矿区进行了应用研究。本文在邻近层卸压瓦斯抽采技术原理分析的基础上,采用UDEC4.0数值模拟软件计算得出采空区冒落带和裂隙带高度为6~8m和18~20m。抽采结果表明,顶板高位钻孔组瓦斯抽采技术治理瓦斯效果明显,上隅角瓦斯体积分数稳定在0.8%以下,且钻孔抽采瓦斯体积分数达55%以上,抽采量达50m3/min以上,实现煤与瓦斯安全高效共采。  相似文献   

7.
为解决福城煤矿1905S工作面上隅角瓦斯超限问题,通过分源预测法进行工作面瓦斯涌出量预测,采用高位裂隙钻孔抽采、高抽巷抽采与上隅角插管抽采相结合的方法来进行瓦斯治理。结果表明:高位钻孔最佳抽采位置为距离煤层顶板上方15~30 m,终孔位置内错工作面回风巷20~30 m;工作面上隅角瓦斯浓度日平均值降到0.3%~0.45%,工作面回风流瓦斯浓度降到0.08%~0.28%。  相似文献   

8.
《煤炭技术》2015,(9):17-19
针对石炭井焦煤公司2474工作面采空区瓦斯涌出量较大以及上隅角瓦斯超限情况,根据焦煤公司煤层瓦斯赋存特征,探讨了适合该矿井的煤与瓦斯共采技术,在工作面回采过程中,回风巷处设计高位裂隙带瓦斯抽采钻孔对本煤层瓦斯进行抽采。通过模拟分析采场覆岩移动规律,确定了采场瓦斯卸压范围,优化了煤与瓦斯共采方案,提高了瓦斯抽采率,有效地解决了2474工作面上隅角及回风瓦斯超限问题,成功地实现了煤与瓦斯共采。  相似文献   

9.
平煤集团为煤层群开采条件,为了更好地开展瓦斯治理工作,采用FLUENT数值分析软件模拟在无煤柱开采条件下,抽采前后戊8煤层采空区瓦斯分布特征,从而为高抽巷抽采钻孔的布置提供参考。研究表明:随着回风横贯距离工作面距离的增加,回风隅角处的瓦斯体积分数逐渐减小,且根据数值模拟结果及现场实际情况,综合确定高抽巷抽采钻孔应布置在垂高14.75倍处最佳,抽采后采空区体积分数明显减小;优化设计了高位瓦斯抽采钻孔的布置,分析钻孔抽采效果,发现高位裂隙带瓦斯浓度基本稳定在23%~45%,瓦斯抽采纯量稳定在12~18 m3/min。表明高位裂隙带瓦斯抽采浓度和纯量基本稳定。  相似文献   

10.
《煤》2017,(7):19-21
针对漳村煤矿2503工作面回采过程中上隅角超限问题,通过对工作面上覆岩层垮落特征分析,研究在回风巷顶板打设高位裂隙钻孔抽采采空区裂隙带瓦斯进行治理。回采过程中钻孔瓦斯抽采量随工作面推进先增大后减小,上隅角和回风流瓦斯涌出量逐渐降低,工作面上隅角瓦斯未出现超限现象。  相似文献   

11.
为防止工作面回风巷尤其是上隅角瓦斯超限,确保工作面的正常生产,同时可以充分利用瓦斯资源,本文利用顶板冒落的关键层理论,并在空区顶板采动裂隙、冒落数值模拟结果的基础上,对高位抽放钻孔的终孔位置、终孔平距、抽放钻孔的钻孔直径等参数进行了优化,朱庄煤矿Ⅲ4414工作面现场试验结果表明钻孔参数优化后,提高了抽采效率,保证回采工作面安全高效生产.  相似文献   

12.
河南能化焦煤公司中马村矿为严重煤与瓦斯突出矿井,随着矿井开采水平的延深,煤层瓦斯含量也随之增加,瓦斯问题始终威胁着矿井的安全生产,尤其是顶层回采工作面上隅角瓦斯问题严重制约着工作面的回采安全。通过在工作面回风巷道内施工高位抽采钻孔,对高位钻孔瓦斯抽采浓度和瓦斯流量数据的分析,对比钻孔终孔位置与工作面相对位置变化关系的研究,得出顶层回采工作面采空区瓦斯最佳抽采效果时的高位钻孔施工参数,以工作面回采动压形成的顶板裂隙作为通道对采空区积聚的瓦斯进行抽采,从而降低工作面采空区瓦斯浓度,避免上隅角瓦斯超限,实现矿井安全生产的目的。  相似文献   

13.
王亮 《中州煤炭》2019,(3):33-35,59
随着工作面推进速度的加快及工作面生产能力的逐渐提高,导致工作面瓦斯涌出量增大,瓦斯是煤矿生产的主要危险源。从理论分析、数值模拟和现场实际相结合的方法,对工作面瓦斯涌出、竖直三带划分特征进行分析,然后数值模拟分析了不同层位参数下高抽巷瓦斯抽采效果。研究得出:该煤矿瓦斯主要包括煤壁瓦斯涌出、采空区瓦斯涌出和采落煤瓦斯涌出;经过多次周期来压后,在采空区形成了采动裂隙“O”形圈;由硬覆岩岩性的经验公式计算煤矿裂隙带最大高度为75~85 m、垮落带距煤层顶板最大高度为30~40 m;选择H=40 m,L=25 m时,能够达到最优抽采效果。对高抽巷合理层位的选择以及优化,是确保高抽巷高效、安全抽采的有效途径。  相似文献   

14.
王硕 《中州煤炭》2018,(6):20-25
随着开采深度的增大,某矿采煤工作面的瓦斯涌出量日益增大,尤其是回风巷及工作面上隅角瓦斯问题,制约着工作面的安全持续生产。目前采用的本煤层抽采虽取得一定消突效果,但是上隅角瓦斯超限时有发生,为更好地解决这一问题,选择在顶板布置走向高抽巷的治理方案。但目前高抽巷布置层位及高度多根据经验确定,很多高抽巷并不能有效降低工作面瓦斯,因此准确选定高抽巷位置对于上隅角瓦斯治理有着重要意义。基于理论计算,结合某矿地质及开采条件,在12061工作面进行了现场试验,确定了走向高抽巷的合理布置位置,为矿井后续工作面的高抽巷布置提供有效的经验。  相似文献   

15.
高瓦斯煤层高位钻孔瓦斯抽采技术试验研究   总被引:7,自引:6,他引:1  
赵杰  刘健  王新颖  刘全 《煤炭技术》2012,31(12):72-74
针对在高瓦斯煤层回采过程中,煤与瓦斯突出综合检测指标经常超限、瓦斯抽采率低等问题,提出了在风巷施工高位钻孔的瓦斯抽采技术,阐述了瓦斯抽采技术的工艺流程和钻孔的布置参数。研究表明:在高瓦斯煤层回采过程中采用高位钻孔的抽采措施,可有效地解决瓦斯抽采率低的问题,降低了回风流中的瓦斯体积分数,提高了瓦斯抽采量和抽采率,减少了向工作面的瓦斯涌出量,保证了工作面的安全回采。  相似文献   

16.
为研究面间煤柱内的大直径钻孔抽采采空区瓦斯效果,基于某矿实际生产条件及COMSOL数值模拟软件,依据上覆岩层运移理论、采空区顶板岩性、顶板垮落破坏特征对采空区孔隙率进行了分块赋值,COMSOL数值模拟研究结果表明:钻孔布置的最佳距离为8~10 m。考虑经济因素及顶板垮落步距的影响,钻孔布置的最佳距离应为10 m;靠近工作面上隅角处,采空区内瓦斯浓度呈中心高、四周低的圆环状分布,该低瓦斯浓度圆环的出现与大直径钻孔对采空区内瓦斯的抽采作用密切相关。ORIGIN数据拟合及计算表明:10 m钻孔间距条件下,控制上隅角瓦斯浓度不超限的钻孔最小瓦斯抽放量为5.4 m3/min。该理论成果的成功运用,指导了该矿的生产安全。  相似文献   

17.
放顶煤开采期间,上覆岩层受到矿压的影响,形成冒落带、裂隙带、弯曲下沉带,工作面采空区遗煤和围岩涌出的大量瓦斯飘浮在上方裂隙带区域,造成瓦斯聚集并向外涌出,形成了安全隐患,因此必须将该区域瓦斯抽出来;以往治理采空区瓦斯主要采用顶板裂隙高位钻场、顶板高抽巷等措施,但是这2种方法施工成本较高,且施工周期长,对生产接替影响较大。煤层顶板裂隙高位定向长钻孔安全高效抽采采用大功率钻机+定向钻进技术,在裂隙带施工控制整个回采范围的长钻孔,减少采空区和邻近层瓦斯向工作面空间的流动,真正实现了“以孔代巷”,既节省了成本,又缩短了工期,还提高了采空区瓦斯抽采的连续性、稳定性,减少了采空区瓦斯向外涌出,提升了瓦斯抽采效果,促进了煤矿安全高效发展。  相似文献   

18.
高瓦斯煤层群“煤与瓦斯共采”技术研究   总被引:7,自引:0,他引:7  
为了解决沙曲矿近距离高瓦斯煤层群开采过程中综采面上隅角和回风流中浓度超限这一难题,结合从德国引进的千米定向钻机设备,提出了高抽钻孔纽和顶板裂隙钻孔组联合抽采瓦斯技术,构建了沙曲矿"煤与瓦斯共采"技术体系.本文在项板千米钻孔抽采技术原理分析的基础上,采用UDEC4.0数值模拟软件计算得出采空区冒落带和裂隙带高度为9 m和30 m,采动裂隙"0"形圈的范围为距工作面顶板垂高10~25 m,距采空区两侧水平距离为10~35 m.研究表明,顶板千米大直径钻孔抽采技术治理瓦斯效果明显,上隅角瓦斯体积分数稳定在0.8%以下,且钻孔抽采瓦斯体积分数达55%以上,抽采量达50 m3/min以上,实现煤与瓦斯安全高效共采.  相似文献   

19.
针对太岳煤矿在工作面生产过程中瓦斯涌出量大、煤尘较大的现状,提出“钻—抽—注”一体化减尘技术措施及工艺流程,通过对切眼前方钻孔瓦斯流量和瓦斯浓度的研究,确定了钻孔短路的范围,确立了停抽钻孔和注水钻孔的范围。通过现场测定并采取相关措施后,有效降低了回风侧煤尘浓度,减轻了煤尘对工人的危害,保证了安全生产,起到了一孔两用的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号