首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 83 毫秒
1.
球磨参数对MgNi储氢合金电化学性能的影响   总被引:4,自引:0,他引:4  
采用机械合金化法制备了MgNi非晶,并对不同制备工艺下的MgNi储氢合金的电化学性能进行了测试。对球磨参数、合金微观结构和合金电化学性能之间关系的分析结果表明,球磨过程中的转速、球料比R和球磨时间3个参数对合金电化学的影响是通过对合金微观结构的控制来实现的。  相似文献   

2.
MgNi非晶合金的制备及电极性能的研究   总被引:5,自引:0,他引:5  
用机械合金化的方法研究了MgNi非晶相的形成效率、合成物相组成和相结构的演变以及电极性能与机械球磨工艺的依赖关系。模拟电池法测量Mg-Ni合成物的电极性能,发现放电容量的大小与非晶相的形成效率成正比,球磨50~60h的MgNi非晶具有最大的放电容量,继续延长球磨时间导致放电容量下降。基于MgNi非晶相形成过程的相组成和相结构,探讨了合成物电极性能的变化规律。  相似文献   

3.
本文根据国内外有关储氢合金电化学性能的研究,简要综述了元素代替、热处理、第二相以及表面改性对储氢合金电化学性能的影响及展望.  相似文献   

4.
采用铜模喷铸法制备了Mg65Ni21Pr14块体非晶合金,研究了该合金在充放电循环过程中组织变化及其对电化学性能的影响。XRD分析表明,非晶合金电极在第6次充放电循环后开始晶化,生成Mg2NiH4和Ni5Pr相。电化学测试表明,Mg65Ni21Pr14非晶合金电极经过3次循环即可活化,其最大放电容量达到429.4 mAh·g-1,经过100次循环后,容量保持率为87.63%。研究表明,非晶结构是实现合金高放电容量和循环稳定性的重要因素。  相似文献   

5.
刘敏丽 《热加工工艺》2012,41(24):75-76
采用二步重熔法制备了Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3/5%Mg2Ni复合材料.通过电池程控测试仪测定了Ni添加对复合储氢合金Mm0.3Ml0.7Ni3.55Co075Mn0.4Al0.3/5%Mg2Ni电化学性能的影响.结果表明,添加Ni粉的合金电极经两个循环就可达到最大的放电容量,而未添加Ni的储氢合金电极需要13个循环才能够活化;当羟基镍粉由100%增加到200%时,合金的最大放电容量增幅分别达到7%、11.8%;在大电流放电试验中,添加Ni粉的合金电极呈良好的高倍率放电性能.  相似文献   

6.
Ni对高能球磨Mg-Ni合金组织和电化学性能的影响   总被引:2,自引:1,他引:2  
利用高能球磨工艺制备了不同Ni含量的Mg-Ni合金,采用X射线衍射分析,研究了随Ni含量变化以及球磨时间不同合金组织演变过程,并对其电化学放电容量进行了测试分析。结果表明,随着Ni含量由Mg2Ni,Mg1.5Ni到MgNi的增加,高能球磨Mg—Ni合金体系经历纳米晶Mg2Ni向非晶MgNi过渡并最终形成纳米晶MgNi合金的转变过程。不同组织状态的Mg-Ni合金其电化学容量有较大的差异。随着Ni含量提高,纳米晶MgNi合金增加,在有纳米晶Ni的存在下,Mg-Ni合金的放电容量可高达500mAh/g。延长球磨时间,获得几乎完全纳米晶的MgNi合金组织,由于没有纳米晶Ni的催化作用,导致合金放电容量下降。  相似文献   

7.
用共沉淀还原扩散法制备了不同化学计量比的LaMg2Ni9-xCox(x=0.3-6.0)和M/Mg2Ni9-xCox(x=0.3-4.5)稀土镁基储氢电极合金。电化学测试结果表明:制得的合金活化性能良好;在Co含量x逐渐增大的过程中,合金的活化次数没有发生明显的变化,合金的放电容量逐渐减小,合金的循环稳定性逐渐增强。混合稀土合金比纯镧合金的活化次数多、放电量小,但是循环稳定性好。合金结构分析表明,合金主相为MgNi2相和LaNi5相,随着Co含量增加,LaCo5相和LaCo3相含量增加。  相似文献   

8.
电极制备工艺对储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
通过合金电极电化学容量与粘结剂的类型、导电剂的用量、电极粉末颗粒尺寸的关系,讨论了制极制备工艺对储氢合金M1(NiCoSiMnAl)5电化学性能的影响。结果表明:选择6%-9%的PVA溶液作为粘结剂,合金电极可获得满意的充放电性能;采用粒度范围较宽的合金粉制作电极,有利于增加合金粉末的填充密度,提高储氢合金的利用率;导电剂用量对电极性能的影响显著。  相似文献   

9.
在不同保压时间下制备了Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3储氢合金电极,研究了保压时间对合金电极的活化性能、最大放电容量、放电特性和循环稳定性的影响规律和机制。结果表明,保压时间对合金电极的活化性能基本无影响,而合金电极的其他电化学性能随着保压时间的增大均呈现出先变好后变坏的变化规律,保压时间为15min时,合金展示了最佳的综合电化学性能,电化学性能的改善主要归因于合金电极的电荷转移速度加速和内阻减小。  相似文献   

10.
在不同保压时间下制备Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3储氢合金电极,研究保压时间对合金电极的活化性能、最大放电容量、放电特性和循环稳定性的影响规律和机制。结果表明,保压时间对合金电极的活化性能基本无影响。合金电极的其它电化学性能随保压时间的增加均呈现出先变好后变坏的变化规律,保压时间为15min时,合金展示了最佳的综合电化学性能,电化学性能的改善主要归因于合金电极的电荷转移速度加速和内阻减小。  相似文献   

11.
采用电子探针(EPMA)、X射线衍射(XRD)和电化学测试研究了在6 mol/L KOH电解液中添加Cu(OH)2对La2MgNi7.5Co1.5贮氢合金电极电化学性能的影响.结果表明,合金电极外表面上被镀上Cu膜,Cu膜的厚度和致密性随充放电循环次数的增加而增加,合金电极表面形成致密性Cu膜,可以有效地抑制电极内部贮氢合金的氧化,但对贮氢合金颗粒粉化的抑制作用不明显.在电解液中添加Cu(OH)2,增加了La2MgNi7.5Co1.5合金电极的活化次数,降低了该合金电极的高倍率放电性能,但对合金电极的最大电化学放电容量没有负面影响.此外,利用电沉积方法在电极表面镀Cu膜能够明显改善该合金电极的电化学循环稳定性.  相似文献   

12.
Ni对非晶态Co-B合金电化学储氢性能的影响   总被引:1,自引:0,他引:1  
通过化学还原共沉积法引入元素Ni制备了三元非晶态Co-Ni-B合金,并研究了元素Ni对非晶Co-B合金电化学储氢性能的影响。结果表明,含镍23.8at%非晶态Ni-Co-B合金的可逆放电容量约为250mAh/g,较非晶Co-B合金下降约20mAh/g,但循环稳定性二者相同,即在650mA/g的高电流密度下循环60次容量几乎保持不变。但进一步增加Ni含量,含镍35.8at%的非晶态Ni-Co-B合金的放电容量和循环稳定性都较不掺杂时发生大幅下降。但是,元素Ni的引入能有效抑制高电流密度充电过程中Co-B合金表面大量氢气的析出,减小电极放电电压平台和容量在循环过程中的波动。这可能得益于以下2个原因:(1)非晶Ni-Co-B合金对水分解的电催化活性降低;(2)吸附态氢原子在非晶Ni-Co-B合金基体中的扩散速度高于在Co-B合金中的扩散速度。  相似文献   

13.
采用机械合金化(MA)方法制备了MgNix(x=0.5,1.0,1.25,1.5,2.0)二元贮氢合金。并详细研究了含Ni量对MAMg-Ni系二元合金结构和电化学性能的影响。结果表明,当x=0.5时,MAMgNi0.5仍为晶态合金。 形成非晶态结构,且放电容量很低;当x=1.0~2.0时,MA Mg-Ni二元合金可形成非晶相,且非昌Mg-Ni二 合金具有较高的室温放电容量。, 时,在非 组成范围内  相似文献   

14.
本文报道了三种电极片接线方式对贮氢合金的电化学性能的影响。通过研究分析,认为带来影响的原因是电极片接线方式改变了电极片的表面状态,并且在充放电过程中影响了电极过程。  相似文献   

15.
V对贮氢合金微观结构和电化学性能的影响   总被引:3,自引:0,他引:3  
为了开发AB5型稀土系低Co贮氢合金,研究了加V低Co贮氢合金M/Ni3.55Co0.3Mn0.4Al0.25Cu0.15Fe0.1Cr0.1Zn0.13Vx(x=0.02,0.05,0.08)V含量变化对放电容量、循环稳定性的影响机理。结果表明,加V低钴贮氢合金可以获得良好的综合电化学性能,但V的加入应严格控制。在本研究范围内,x=0.02的加V低钴贮氢合金具有最佳的综合电化学性能。  相似文献   

16.
研究了干法、湿法和湿法加添加剂三种制粉工艺对贮氢合金电化学性能的影响 ,结果表明 :制粉工艺对合金粉末的表面形貌、粒度分布、氧含量均存在很大的影响 ,并影响到其电化学性能。当采用湿法制粉工艺时 ,贮氢合金电极的活化性能较干法制粉明显改善 ,若加入一定量的添加剂 ,活化性能进一步提高 ,第一次放电容量即达到2 78mAh·g-1,第二次放电容量达到合金电极的稳定容量 32 2mAh·g-1。湿法制粉对贮氢合金电极的循环稳定性能有一定的负面影响 ,这可能与贮氢合金粉末表面的氧化和细粉相对含量较多有关 ,然而 ,当加入一定量的添加剂以后 ,贮氢合金电极的氧含量得到有效的控制 ,3C充放循环稳定寿命达到 5 0 0次 ,与干法制粉工艺接近。  相似文献   

17.
为了降低AB5犁储氢合金的成本,对低钴的Ml0.9Mg0.1Ni3.4Co0.3Al0.3合金的组织结构和性能进行了研究,并与工业储氢合金MmNi3.55Co0.75Mn0.4Al0.3进行了对比。实验结果表明:此低钴合金是由LaNi5主相和LaNi3第二相构成。它们的储氢晕(ω,%)分别为1.36%和1.37%,最大放电容量分别为320mAh/g和324mAh/g,循环稳定性为:300次充放电循环后,2种合金剩余容晕都是88%。但Ml0.9Mg0.1Ni3.4Co0.3Al0.3的高倍率放电性能明显优于MmNi3.55Co0.75Mn0.4Al0.3合金。主要原因是由于LaNi3第二相的乍成不仪提高了合金颗粒表面的电化学催化活性,而且提高了结构韧性从而抵消了低钴合金颗粒粉化的不利影响。  相似文献   

18.
研究了快速凝固处理对钛钒系贮氢电极合金Ti0.8Zr0.2V2.4Mn0.48Cr0.72Ni0.9的相结构、特别是电化学性能的影响规律。XRD研究表明:合金主要由六方结构的C14 Laves相和体心立方结构的钒基固溶体相所组成,快速凝固减少了合金中C14 Laves相的含量。电化学性能分析表明:快速凝固降低了合金电极的最大放电容量,增加了电极的活化次数,提高了电极表面的反应阻抗,恶化了电极的动力学性能,但是却大大改善了合金电极的循环稳定性。  相似文献   

19.
粉末粒度对贮氢合金Ml(NiCoMnTi)5电化学性能的影响   总被引:7,自引:3,他引:4  
系统地研究了粉末粒度对贮氢合金Ml(NiCoMnTi)5电化学性能的影响。结果表明,在200μm-〈38.5μm的粒度范围内,合金粉超细,其放电容量就越高,高倍率放电性能就越好,循环稳定性就越佳;将两种不同粒度的合金粉混合使用时,两种合金粉的粒径相差较大,其放电容量越高,且当粗细粉质量比为7:3时,放电容量达到最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号