首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
刘洋  王新华  颜涛  张炯明  张开均 《炼钢》2008,24(3):46-49
用Gleeble-1500热/力模拟机测试了X60、X65、X70钢铸坯的高温延塑性,并进行对比研究.通过扫描电镜、金相显微镜对断口形貌及组织进行分析,得出主要结论:高温脆性区(T1~1 300℃)钢的延塑性主要受碳含量多少的影响,相比较X70的塑性较好;高温高塑性区(1 100~1 300℃)由于试验应变速率小于10-2/s时,该区域不存在脆化,3个钢种塑性均很好;在塑性槽高温端(900~1 100℃),由于低熔点硫化物等析出,弱化晶界,另外动态再结晶发生温度的不同,导致两个钢种塑性的明显差别;塑性槽两相区(700~900℃)先共析铁素体的出现是3个钢种塑性很低的共同原因,MnS和钛可以促进铁素体在晶内和晶界同时生成,750℃以下,3个钢种延塑性均有所提高,X65塑性恢复较快.  相似文献   

2.
借助Gleeble1500热模拟试验机测试了含Nb和含Nb、Ti两种中碳微合金化钢的高温力学行为,分析了析出物、相变、动态再结晶对微合金化钢高温延塑性的影响。结果表明:试验钢种无第Ⅱ脆性区出现;含Nb钢第Ⅲ脆性区的温度范围为950~700℃,含Nb、Ti钢第Ⅲ脆性区的温度范围为900~725℃;微合金化元素Ti的加入可以细化奥氏体晶粒使含Nb微合金化钢高温塑性槽变窄、变浅;析出物沿晶界多而细小的析出和γ→α相变是第Ⅲ脆性区微合金化钢高温延塑性变差的主要原因。实际生产中通过优化二冷区水量,采用弱冷,可以有效降低微合金化钢表面微裂纹的发生率。  相似文献   

3.
通过Gleeble-3500高温模拟试验机对Q460C钢种高温塑性区间进行了测定,深入分析了Q460C钢的高温断裂机理,确定了最佳的铸坯矫直区间。研究表明:600℃~800℃为Q460C钢的低温脆性区,在该区间断裂形式以混合断裂为主;900℃~1 050℃塑性最好,断面收缩率在85%以上,此时的断裂形式为韧性断裂;在1 050℃~1 250℃拉伸时断面收缩率有所降低,但仍在75%以上,通过对其断口分析发现其主要原因是Nb(CN)的沉淀析出造成。  相似文献   

4.
减少含铌、钒、钛微合金化钢连铸板坯角横裂纹的研究   总被引:9,自引:6,他引:9  
王新华  王文军  刘新宇  费惠春  张立  叶锦渭 《钢铁》1998,33(1):22-25,72
根据钢的高温延塑性可将含铌、钒、钛微合金化钢分为两类:一类是含碳较低(≤0.10%)的钢种,此类钢在温度降低到825℃后延塑性能够随温度降低而快速恢复;另一类是含碳较高(〉0.12%)或含铌、钒较高的钢种,此类钢在第Ⅲ脆性温度区的脆化可延伸至725℃。通过提高恒位速率、液面自动控制投入率和铸机对弧精度,并针对钢的高温延塑性特点采用合理的二冷工艺,使矫直区铸坯边角部温度避开钢的脆性温度区,含铌、钒、  相似文献   

5.
含铌钛微合金化钢连铸坯高温变形试样中碳氮化物的析出   总被引:4,自引:0,他引:4  
吴冬梅  张立 《化工冶金》1997,18(3):273-276
铌、钛微合金化钢连铸坯高温变形试样中主要有三类碳、氧人合物析出;(1)高温细Nb(C,N)动态析出物;(3)温度低于900℃区间洞晶界和在晶粒基体内部析出的微细Nb(C,N)动态析出物;(3)温度低于900℃后Nb(C,N)依附在TiN颗粒上生成的复合析出物,在950-900℃区间析出的微细Nb(C,N)是造成此温度区间试样延塑性急怖降低的主要原因,由于氮优先与钛反应,减少了低温时Nb(C,N)t  相似文献   

6.
利用Gleeble3500试验机研究汽车用C-Mn-Al系TRIP钢的高温力学性能,测定了零塑性温度和零强度温度,应用差示扫描量热法测定其相变区间,采用扫描电镜和光学显微镜分析了不同拉伸温度对应的断口宏观形貌及断口附近组织组成.该钢种零塑性温度和零强度温度分别为1425℃和1430℃,第Ⅰ脆性区间为1400℃-熔点,第Ⅲ脆性区间为800-925℃.第Ⅲ脆性区脆化的原因是α铁素体从γ晶界析出,试样从975℃冷却至700℃过程中,随着α铁素体析出比例的增大,断面收缩率先减小后增大.基体α铁素体比例为8.1%时(850℃),断面收缩率降至28.9%;而拉伸温度在800℃以下时,基体α铁素体比例超过16.7%,断面收缩率回升至38.5%以上.该钢种在1275.6℃时开始析出少量粗大的Al N颗粒,但对钢的热塑性没有影响.   相似文献   

7.
在邯钢gleeble-3500热/力模拟试验机上,针对Q460C连铸坯进行了高温热塑性测试研究.结果表明:1000~1300℃为塑性温度区间;650~950℃为第Ⅲ脆性温度区,在此区间,沿奥氏体晶界析出膜状铁素体抗拉能力较低,晶界处存在夹杂物及微合金元素的析出物是钢的热塑性降低的主要原因,极易导致连铸坯产生裂纹缺陷.  相似文献   

8.
本实验采用Gleeble-1500热-力学模拟实验机,测试了集装箱板钢-IV5934E1钢连铸坯试样从熔点到600℃温度区间的高温力学行为,以断面收缩率(R.A.)为标准对钢的高温延塑性进行了评价。采用金相、扫描电镜等手段对拉伸试样急冷后断口的组织、形貌进行了分析,得到IV5934E1钢各脆性区的脆化原因及机理。结果表明:在熔点-600℃的温度区间内,IV5934E1钢存在第I和第Ⅲ两个脆性区。第I脆性区内,高温下晶界处富含硫、氧等杂质是导致沿晶断裂主要原因;第Ⅲ脆性区内,钢的脆性主要发生在(r+a)两相区高温域(800℃-775℃),由于先共析铁素体沿晶界析出使钢的塑性降低。IV5934E1钢中高含量的磷和铜未对钢的高温延塑性产生不良影响。  相似文献   

9.
EQ47钢是最常用海洋平台用钢之一,为了生产出符合质量要求的EQ47钢,需要对EQ47钢生产工艺进行研究;钢的高温塑性可以影响铸坯的质量,为了保证铸坯质量,需要对含铌、钒、钛EQ47海洋平台用钢的高温塑性进行研究。采用Gleeble-1500D热模拟机进行高温塑性试验,分析了EQ47钢高温塑性特点,断裂机理,以及铌、钒、钛对高温塑性的影响。结果表明:钢存在2个脆性区间,即第Ⅰ脆性区间为1270-1350℃,第Ⅲ脆性区间为600-900℃;试验钢的断裂形式有穿晶断裂和沿晶断裂;钢中的铌、钒、钛及其析出物均对钢的高温塑性产生影响。  相似文献   

10.
采用Gleeble3500热模拟试验机在温度区间650~1300℃对汽车用1 180 MPa级F/M双相高强钢进行高温热塑性研究,绘制热塑性曲线并对高温拉伸试样断口和显微组织进行观察。试验结果可知:该钢种在试验温度范围内存在1个脆性区,即910~675℃区间,800℃时断面收缩率达到最小值28.76%,在熔点~910℃温度区间内呈现良好塑性,断面收缩率均在60%以上;高温塑性区较窄,第Ⅲ脆性区"布袋"曲线明显且范围较大,该钢种裂纹敏感性高。断口观察可知,950℃和650℃断口均具有典型韧窝特征,属于韧性断裂;800℃断口为沿晶和解理混合型断口,属于典型脆性断裂。650℃断裂主要由先共析铁素体沿原奥氏体晶界析出引起,800℃脆性断裂主要由晶界弱化导致,1 050℃以上高温热强度低,拉伸超过材料所承受的最大强度而发生缩颈断裂。为避免板坯在矫直段产生裂纹,铸坯矫直温度应控制在950℃以上,避开第Ⅲ脆性区(910~675℃)。  相似文献   

11.
为解决钢厂高强度船板钢连铸坯经常出现的中间裂纹等内部缺陷问题,从该钢种连铸坯中间裂纹区域获取试样,并对其进行了高温力学性能测试。结果表明,低温脆性区(即第三脆性区)的温度范围为750~925℃,在900~950℃温度区断口处存在较多液膜。综合断口形貌、液膜存在的温度范围以及断口纵断面金相组织等方面进行分析,认为950℃...  相似文献   

12.
摘要:使用Gleeble热模拟机研究了V-N和V-N-Nb微合金钢的高温热塑性,利用SEM和金相显微镜对热拉伸试样断口形貌和组织进行分析,并通过TEM对析出相进行了表征。结果表明在V-N钢基础上添加质量分数为0.024%的Nb,总体上降低了在第Ⅲ脆性温度区(950~600℃)的热塑性,使塑性低谷区变宽、变深。断面收缩率Z值低于40%的临界温度区间,V-N钢为862~713℃,而V-N-Nb钢在903~700℃以下,塑性低谷区宽度增加了54℃以上。2种钢的Z最低值在750℃,V-N钢为24.5%,V-N-Nb钢为15.5%。A3温度以上,V-N-Nb钢中更多细小的碳氮化物析出是它热塑性低于V-N钢主要原因;A3温度以下,750℃时Z最低值是由薄膜铁素体和碳氮化物析出综合作用的结果,温度降至700℃时Z提高,较厚的晶界铁素体和晶内铁素体生成是Z升高的主要原因。  相似文献   

13.
果晶晶  陈健  王书桓 《特殊钢》2011,32(5):63-65
用Gleeble热模拟试验机对SPHC钢(%:0.02C、0.18Mn、0.03Si、0.04Als)70 mm×1250 mm板坯进行600~1 350℃的力学性能的研究,并借助扫描电子显微镜和能谱仪分析了拉力试样的断口。结果表明,SPHC薄板坯的第Ⅰ和第Ⅲ脆性区分别为1 200℃~固相线及600~850℃,850~1 200℃薄板坯的塑性最好;第Ⅲ脆性区试样为沿晶界断裂;晶界处夹杂物及γ→α相变中形成的片状铁素体造成了晶界脆性,降低了第Ⅲ脆性区材料塑性。  相似文献   

14.
通过金相、SEM和EDS等技术,研究了900 ℃下不同时效时间对超纯铁素体不锈钢组织和性能的影响。结果表明,439钢种高温时效对Ti(C,N)析出作用较小,晶界析出相TiN较少,晶粒粗化严重,塑性较低;441钢种高温时效会沿着晶界析出Fe2Nb(Laves)相,析出数量较多,晶粒较细小,但由于Fe2Nb(Laves)相沿晶界呈网状分布,对材料塑性影响较大;444钢种高温时效会在晶界和晶内析出Fe3(Nb,Mo)3C,析出数量较少,第二相钉扎作用较弱,部分晶粒出现异常长大,由于Fe3(Nb,Mo)3C析出相未呈网状分布,断后伸长率高于441钢种。  相似文献   

15.
含铌微合金高强度钢Q345C连铸坯的热塑性   总被引:1,自引:0,他引:1  
 通过Gleeble-2000 试验机研究了Q345C钢连铸坯的高温热塑性。利用扫描电镜、金相显微镜、透射电镜观察了第Ⅰ、Ⅲ脆性温度区内拉伸试样断口部位的显微组织及形貌,分析了动态再结晶、相变、析出物等对微合金化钢高温延塑性的影响。结果表明:在1×10-3/s应变速率下, Q345C钢存在两个脆性温度区,即第Ⅰ脆性区(1200~1300℃)和第Ⅲ脆性区(600~875℃),无第Ⅱ脆性区出现;最高塑性出现在1050℃左右,断面收缩率(Z)达到85.8%;在第Ⅲ脆性区,沿奥氏体晶界析出膜状铁素体抗拉能力较低,晶界处存在夹杂物以及微合金元素的析出物,是钢的热塑性降低的主要原因。  相似文献   

16.
含钒低合金钢铸坯高温延塑性研究   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟试验机测试了含钒低合金钢铸坯的高温延塑性,利用扫描电镜、金相显微镜对断口形貌及金相组织进行分析。低合金钢的第Ⅰ脆性温度区在Ts~1 370℃之间,第Ⅲ脆性温度区在915~710℃之间。第Ⅲ脆性区间由奥氏体低温域晶界滑移楔形裂纹造成的沿晶脆性断裂和奥氏体晶界先共析铁素体薄膜造成的沿晶韧性断裂两部分组成。钢中的V对钢的第Ⅲ脆性凹槽的影响比较大,脆化向低温区域延伸。  相似文献   

17.
王勇 《山东冶金》2012,(3):32-34
以两种微合金化方式(Nb、V、Ti和Nb、V、Ti、Mo)的X70管线钢为研究对象,在MMS-200热模拟试验机上进行了双道次轧制工艺模拟试验,研究不同卷取温度、冷却速度对X70显微组织的影响.结果表明,随着卷取温度的降低及冷速的提高,金相组织细化.卷取温度在520℃、冷速在15℃/s左右可以得到较为理想的针状铁素体组织.Nb、V、Ti微合金化管线钢,当冷却速度为15℃/s时,带状组织完全消失.  相似文献   

18.
花艳侠  张晨  马良  荣哲  项利  仇圣桃 《特殊钢》2015,36(1):62-64
通过Gleeble-1500应力-应变热模拟试验机测试了由70 mm连铸坯锻成的Φ13 mm棒材的高牌号无取向硅钢(/%:0.002 7C,3.06Si,0.32Mn,0.013P,0.004S,0.50Al,0.002 7Ti,0.004 2 N)的高温(600~1 250℃)力学性能。结果表明,在应变速率为1×10-3s-1时,高牌号无取向硅钢中仅存在第Ⅰ脆性温度区(1 250℃至熔点),第Ⅱ脆性温度区和第Ⅲ脆性温度区均未出现,主要原因是超低碳(≤50×10-6)、高硅(3%Si)致使硅钢凝固冷却过程中不经历α-γ-α相变,避免了固溶的硫、氧等元素以(Fe,Mn)O、(Fe,Mn)S、AI2O3等形式在奥氏体晶界沉淀和长大导致晶界强度降低,产生裂纹。  相似文献   

19.
钢中的Al、N含量对连铸及其后续加工热塑性和奥氏体晶粒度控制有重要影响,这也是高温渗碳钢与各种Al脱氧钢广泛关注的问题。使用Gleeble 3800热/力学模拟试验机测定了一种轨道交通用高铝氮积齿轮钢(SCM420H)的高温热塑性,并结合差示扫描量热仪(DSC)分析、AlN析出热力学模型以及Schwerdtfeger热塑性特征值计算模型揭示了其第三脆性区的形成机制与调控途径。结果表明,高铝氮积齿轮钢第三脆性区低谷温度范围为750~850 ℃,这是由应力诱导先共析铁素体膜的产生与AlN粒子的大量析出共同导致的。Schwerdtfeger热塑性特征值计算模型可以较准确地预测高铝氮积齿轮钢第三脆性区的上限温度与最小面缩率,但由其预测的热塑性曲线下限温度偏高,应进一步考虑先共析铁素体膜析出的影响,并依据Ar3温度对其进行修正。高Al高N齿轮钢第三脆性区的下限温度取决于其先共析铁素体开始析出温度,主要与钢种成分和铸坯冷却速率相关,连铸生产中可控性有限;但其上限温度则与铸坯应变速率、冷却速率以及钢中的Al、N含量和AlN析出行为均有关联,调控空间较大,应该是连铸生产中合理控制铸坯热塑性与表面裂纹倾向的正确途径。  相似文献   

20.
钢中的Al、N含量对连铸及其后续加工热塑性和奥氏体晶粒度控制有重要影响,这也是高温渗碳钢与各种Al脱氧钢广泛关注的问题。使用Gleeble 3800热/力学模拟试验机测定了一种轨道交通用高铝氮积齿轮钢(SCM420H)的高温热塑性,并结合差示扫描量热仪(DSC)分析、AlN析出热力学模型以及Schwerdtfeger热塑性特征值计算模型揭示了其第三脆性区的形成机制与调控途径。结果表明,高铝氮积齿轮钢第三脆性区低谷温度范围为750~850 ℃,这是由应力诱导先共析铁素体膜的产生与AlN粒子的大量析出共同导致的。Schwerdtfeger热塑性特征值计算模型可以较准确地预测高铝氮积齿轮钢第三脆性区的上限温度与最小面缩率,但由其预测的热塑性曲线下限温度偏高,应进一步考虑先共析铁素体膜析出的影响,并依据Ar3温度对其进行修正。高Al高N齿轮钢第三脆性区的下限温度取决于其先共析铁素体开始析出温度,主要与钢种成分和铸坯冷却速率相关,连铸生产中可控性有限;但其上限温度则与铸坯应变速率、冷却速率以及钢中的Al、N含量和AlN析出行为均有关联,调控空间较大,应该是连铸生产中合理控制铸坯热塑性与表面裂纹倾向的正确途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号