首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environment-friendly components coupled with the ability to mimic the simplicity and originality of nature necessitate advanced sustainable materials with structural capabilities for energy-efficient applications. The use of feedstock deriving from plant-based, renewable organic material to produce nanofibril that embodies enhanced insulating properties and high mechanical strength constitutes an efficient development strategy. Herein, a free-standing, hierarchical superinsulation membrane by leveraging the principle of the bottom-up method is reported. The electrospun cellulose nanofibrils/aerogel-based core layer provides exceptional thermal properties with its thermal conductivity of 10.2 mW m−1K−1. The lightweight, flexible, and durable paper-like membrane features a tensile strength of 11.3 MPa and a bending rigidity in the order of 4.6 cN mm−1. The hydrophobic superinsulation membrane material also exhibits a ΔT of ≈25 °C under continuous sunlight illumination and allows thermal runaway mitigation of rechargeable lithium-ion batteries. All the aforementioned properties position this hybrid superinsulation membrane as a promising material for energy-saving thermal management applications.  相似文献   

2.
K Kutzner  F Schmidt  I Wietzke 《低温学》1973,13(7):396-404
The basic equations for the different heat transfer mechanisms in superinsulation packages and their inter-relationships are discussed. The distribution of the heat flow into the radiative and the conductive components leads to a calculated value for the lowest temperature at which a superinsulation can effectively be used. For six different aluminium coated foils the radiative and the conductive heat flow is measured as a function of the layer density and of the thickness of the aluminium coating. Additionally the outgassing of the foils and the electrical resistance of the aluminium layers dependent on their thickness is investigated.  相似文献   

3.
It is in particular of importance for HTS coils to secure a larger central magnetic field and/or a large stored energy with shorter length of HTS tapes. The critical current of an HTS tape depends on both the flux density and the flux angle against tapes. From this point, the performance improvement of HTS coils is taken into account with an analytical model. The minimum volume coil derived from the Fabry Factor constant curve is taken concerning the original coil shape, which is often employed in low temperature superconducting coils. The coil critical current was analyzed in consideration of the anisotropic properties of the tape.The electric field of HTS tapes in the coil was calculated at the coil critical current and the high electric field portion were cut out. The optimal coil cross section is obtained by iterating this calculation process. As a result, the critical current and the stored energy density of the coil were improved. The stored energy density increased about 17% and the central magnetic field was almost kept constant regardless of 19% reduction of HTS tapes, as compared with the original coil with the rectangular cross section.  相似文献   

4.
The comparative efficiency of heat shielding using boil-off vapour of certain liquids is considered. Criteria of ideal and real efficiency have been introduced. The latter may be a characteristic of the vessel; it defines its suitability for a given gas. The comparative efficiency of different construction methods for multilayer superinsulation is analysed. The insulation which is externally situated relative to the vacuum gap between inner vessel and outer jacket appears to be the most preferable. The vessel construction using multilayer superinsulation and a cooled shield possesses the advantages of external insulation for heat transfer and of internal insulation for ease of construction. Basic principles for calculating the design of vessels with a radiation shield, which is cooled by stored liquid vapour, are worked out. Nomograms for determining heat parameters of construction are obtained. Possibilities for experimental determination of heat parameters of vessels with gas thermostats are discussed.  相似文献   

5.
This paper describes an experimental and analytical study on fracture and damage behavior of GFRP woven laminates at cryogenic temperatures. CT (compact tension) tests were carried out at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K) to evaluate the critical values of the fracture mechanics parameters. During the CT tests, AE (acoustic emission) method was implemented. AE signals can identify the critical load at which gross failure occurs. A FEA (finite element analysis) was also applied to calculate the fracture mechanics parameters. The failure criteria (Hoffman criterion and maximum strain criterion) or the damage variable based on the continuum damage mechanics was incorporated into the model to interpret the experimental measurements and to study the damage distributions within the specimen. Several methods of calculating J-integral are discussed.  相似文献   

6.
This paper describes an experimental study on the fatigue damage behavior of GFRP woven laminates in terms of stiffness degradation and residual strength under cyclic loading at low temperatures. Uniaxial, load-controlled, tension-tension fatigue tests were conducted at room and low temperatures. The applied stress versus cycles to failure (S-N) relationships and fatigue limits were obtained for the GFRP woven laminates and the microcrack evolution due to fatigue loading was characterized using optical microscopy. Temperatures were also measured using a thermocouple embedded in the center of the specimens.  相似文献   

7.
Commercial 5083 Al rolled plates were subjected to friction stir processing (FSP) with a tool rotational speed of 430 rpm and a traverse feed rate of 90 mm/min. This treatment resulted in a fine grained microstructure of 1.6 μm and an average misorientation angle of 24°. Ductility was measured using tensile elongations at a temperature of 250 °C at three strain rates, and demonstrated that a decrease in grain size resulted in significantly enhanced ductility and lower forming loads. The ductility of the friction stir processed material was enhanced by a factor ranging from 2.6 to 5 compared to the ductility of the as received material, in the range of the strain rates tested. The strain rate sensitivity of the processed material is 0.33 while for the as received, it is 0.018. The deformation mechanism, in the fine-grained specimens is mainly controlled by solute drag creep, though the contribution of grain boundary sliding to the deformation process cannot be overlooked. Both mechanisms led to significant flow localization and simultaneous cavity formation.  相似文献   

8.
T. Ohmori 《低温学》2005,45(12):725-732
Thermal performance of multiplayer insulation (MLI) is affected by contact pressure between adjacent layers. In order to evaluate the thermal performance of the MLI fabricated in the horizontal cryostats of superconducting magnets, it is important to investigate the contact pressure in the MLI. In case of a horizontal cryostat, the MLI is wound around horizontal cylindrical surface and is compressed at the upper part of the cylinder due to the MLI self-weight. At first, a single thin film wound around the horizontal cylinder was analyzed to evaluate the contact pressure acting on the cylinder. The analysis has been extended to the multiply wound film around horizontal cylinder, in order to investigate the distribution of contact pressure between adjacent layers. By using experimental data obtained with a flat panel calorimeter, the results of this analysis have been applied to evaluate the thermal performance of MLI around a horizontal cylinder. And the non-dimensional contact pressure parameter P* has been introduced as a useful parameter to evaluate and compare the thermal performance among different kinds of MLI.  相似文献   

9.
Y.M. Eyssa  O. Okasha 《低温学》1978,18(5):305-307
A small number of refrigerated shields have previously been shown to reduce thermal radiation heat leaks as efficiently as a hundred superinsulated shields. In this paper the use of superinsulation, or even a small number of floating shields, between the refrigerated shields is shown to result in different optimum temperatures and a significant reduction in the total refrigeration power.  相似文献   

10.
This paper focuses on understanding the tension-tension fatigue behavior of woven glass fiber reinforced polymer laminates at cryogenic temperatures. Tension-tension fatigue tests at frequencies of 4 and 10 Hz with a stress ratio of 0.1 were conducted at room temperature, 77 and 4 K. The fatigue stress versus cycles to failure (S-N) relationships and fatigue limits for 106 cycles were obtained. Fractured specimens tested under fatigue tests were also examined with optical microscope.  相似文献   

11.
We are developing a new cryogenic neutrino detector: electron bubble chamber, using liquid helium as the detecting medium, for the detection of low energy p-p reaction neutrinos (<420 keV), from the Sun. The program focuses in particular on the interactions of neutrinos scattering off atomic electrons in the detecting medium of liquid helium, resulting in recoil electrons which can be measured. We designed and constructed a small test chamber with 1.5 L active volume to start the detector R&D, and performed experimental proofs of the operation principle. The test chamber is a stainless steel cylinder equipped with five optical windows and ten high voltage cables. To shield the liquid helium chamber against the external heat loads, the chamber is made of double-walled jacket cooled by a pumped helium bath and is built into a LN2/LHe cryostat, equipped with 80 K and 4 K radiation shields. A needle valve for vapor helium cooling was used to provide a 1.7-4.5 K low temperature environments. The cryogenic test chamber has been successfully operated to test the performance of Gas Electron Multipliers (GEMs) in He and He + H2 at temperatures in the range of 3-293 K. This paper will give an introduction on the cryogenic solar neutrino detector using electron bubbles in liquid helium, then present the cryogenic design and operation of liquid helium in the small test chamber. The general principles of a full-scale electron bubble detector for the detection of low energy solar neutrinos are also proposed.  相似文献   

12.
S.L. Qi  P. Zhang  R.Z. Wang  A.L. Zhang  L.X. Xu 《低温学》2006,46(12):881-887
In the present study, a cryoprobe with heat transfer enhancement configuration (HTEC) is developed and its freezing performance is evaluated experimentally. Two kinds of heat transfer enhancement configurations, i.e., coiled wire insert and helical mesh insert, are proposed and used in the cryoprobe. Furthermore, in order to ensure that vapor can be discharged freely and only liquid nitrogen reaches the cryogenic section of the cryoprobe, a vapor–liquid separator is employed upstream of the cryoprobe. It is found that the precooling time of the cryoprobe is significantly shortened with the vapor–liquid separator. The enhancement of the freezing capacity with the helical mesh insert is slightly superior to that with the coiled wire insert. With the helical mesh insert, the freezing capacity of the cryoprobe can be enhanced by 41%, and the wall temperature can reach 111.3 K in about 10 min. Significant temperature oscillations are observed in the precooling stage of the cryoprobe with HTEC, while only slight temperature oscillations can be found without HTEC.  相似文献   

13.
In the present study, a novel thixoforming process for semi-solid deformation of A356 aluminum alloy is introduced using a continuous hot deformation process to the temperature being lower than the eutectic temperature of the alloy. A new hypothesis was introduced and the deformation mechanism of the alloy was investigated using the presented hypothesis. Microstructure and fracture surfaces of thixoformed samples were investigated using image analyzing technique and scanning electron microscopy. Obtained results indicated that this novel thixoforming process produces fine and compact silicon particles, dispersed uniformly in the microstructure of the alloy, compared to those produced by conventional thixoforming and gravity-cast processes with large and integrated morphology for silicon particles. The production stages of these silicon particles in this process were well documented by mentioned hypothesis. In order to investigate the effect of this novel process on mechanical properties of A356 alloy, tensile tests were conducted on produced samples. It was found that morphological changes of silicon particles as well as increasing the density ratio of samples in this process have a remarkable effect on enhancing the mechanical properties of produced alloy in comparison with other production routes. A new combination parameter, i.e. silicon density ratio (SDR) index was introduced. This parameter correlates the mechanical properties of samples to morphological properties of silicon particles and density ratio of them. Results of the study also indicated that samples with low SDR index have superior mechanical properties and consequently intergranular fracture mode.  相似文献   

14.
A number of technological advances required to store and maintain normal-boiling-point and densified cryogenic liquids, including liquid hydrogen, under zero boil-off conditions in-space, for long periods of time, have been developed. These technologies include (1) thermally optimized compact cryogen storage systems that reduce environmental heat leak to the lowest-temperature cryogen, which minimizes cryocooler size and input power, and (2) actively-cooled shields that surround the storage systems and intercept heat leak. The processes and tools used to develop these technologies are discussed. A zero boil-off liquid hydrogen storage system technology demonstrator for validating the actively-cooled shield technology is presented.  相似文献   

15.
We have proven by numerical analysis and experiment that with the use of the SRDB developed shieldless method for cryogenic vapor usage maximum vapor–cold usage is achieved. It is shown that evaporation is decreased in cryovessels and cryostats by using this method equal to 45 times for helium, 5 times for hydrogen and 1.7 times for nitrogen.  相似文献   

16.
Failure behavior of low carbon steel resistance spot welds in quasi-static tensile–shear test is investigated. Microstructure, hardness profile and mechanical performance of the spot welds were studied. Results showed that spot welds are failed in two distinct failure modes: double-pullout and interfacial failure modes. There is a critical fusion zone size beyond which, pullout failure mode is guaranteed. Metallographic examination showed that failure is a competitive process between shear plastic deformation of weld nugget and necking of the base metal. In pullout failure mode, only the grain pattern of the base metal changes significantly and that of the fusion zone and heat affected zone remains unchanged. Strain localization was occurred in the base metal due to its low hardness. Moreover, the experimental results showed that increasing the holding time which increases the hardness of the fusion zone did not affect the peak load. It was concluded that in the pullout failure mode, the strength of the spot welds is not affected by the fusion zone strength. Fusion zone size proved to be the most important controlling factor for the spot welds’ mechanical performance in terms of peak load and energy absorption.  相似文献   

17.
The effect of the magnetic flux creep on the levitation stability of high-temperature superconductors was studied. It was shown experimentally that under a unipolar magnetization the levitation force decreased at a logarithmic velocity characteristic of the creep process. If the current structure was bi- or multi-polar one, which was formed in a sample exposed to a reversing external magnetic field, the force remained unchanged during a certain period of time. The theory of relaxation of magnetization and force for a partial and full penetration of the critical state was considered. It was shown that relaxation decelerated sharply if the region with a current producing the main magnetization was far from the superconductor surface. A concept of an open and internal magnetic relaxation was introduced. The time of the internal relaxation for different reverse depths was estimated. The calculated values approached the experimental values of the levitation stabilization time.  相似文献   

18.
In this paper we present the development of a new hybrid energy transfer line with 30 m length. The line is essentially a flexible 30 m hydrogen cryostat that has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen precooling and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were made at temperatures from 20 to 26 K, hydrogen flow from 70 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation was the most effective in reducing heat transfer from room temperature to liquid hydrogen in ∼10 m section of the cryostat, indicating that it can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was 3500 A. It means that the 30 m hybrid energy system developed is able to deliver ∼50–60 MW of chemical power and ∼50–75 MW of electrical power, i.e. up to ∼135 MW in total.  相似文献   

19.
The synchrotron SIS100 is one of the two basic accelerators of the future Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. This accelerator should provide high intensity U28+ and proton beams with a pulse repetition rate of 1 Hz (i.e. a ramp rate of 4 T/s). The magnetic system of the accelerator uses superferric 2.1 T dipoles of about 3 m length and 32 T/m quadrupoles of about 1 m length. The magnet coils are made of a hollow tube cable wrapped with Cu/NbTi composite wire cooled with two phase helium flow at 4.5 K. The bore dimensions were defined to 130 × 60 mm for the dipole and 135 × 65 mm for the quadrupole. We present the developed ANSYS models for different important aspects: AC loss, magnetic field quality and mechanical stability. Preliminary studies verified the approaches and these models were applied to calculate the effects for the coil, the yoke and the beam pipe structures. We outline further steps to fully describe the SIS100 magnets including mechanical and thermal properties.  相似文献   

20.
Son H. Ho  Muhammad M. Rahman   《低温学》2008,48(1-2):31-41
This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump–nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号