首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of the extended Huygens–Fresnel integral principle and unified theory of coherence and polarization of light, we studied the effects of oceanic turbulence on polarization properties of a partially coherent radially polarized doughnut (PCRPD) beam. The ocean-induced fluctuations in the refractive index are assumed be driven by temperature and salinity fluctuations. Numerical examples of changes in polarization properties, such as the degree of polarization, the degree of ellipticity, and the orientation angle in the oceanic turbulence for the PCRPD beam, are given. Our analysis demonstrates how polarization of the PCRPD beam is affected by statistical properties of the source and by several parameters of oceanic turbulence. We find that the propagation of the PCRPD beam is different from that of stochastic beams in oceanic turbulence. The degree of polarization for the PCRPD beam approaches a certain steady value, and the elliptical polarized state of the fully polarized portion of the beam will become fully linear in the far field.  相似文献   

2.
On the basis of the generalized diffraction integral formula for misaligned optical systems in the spatial domain, an analytical propagation expression for the elements of the cross-spectral density matrix of a random electromagnetic beam passing through a misaligned optical system is derived. Some analyses are illustrated by numerical examples relating to changes in the spectral degree of polarization and in the spectral degree of coherence of an electromagnetic Gaussian-Schell-model beam propagating through such an optical system. We find that the degree of polarization in the neighboring areas of the focal plane is oscillating, and the effect of misalignment on coherence is not so evident as that on polarization.  相似文献   

3.
We study the changes in the degree of polarization of an electromagnetic Gaussian Schell-model beam, as the beam propagates through the turbulent atmosphere. We demonstrate that, within the framework of the Tatarskii model of the turbulent atmosphere, the degree of polarization of the beam changes appreciably at relatively short propagation distances in the atmosphere. In the long-propagation distance limit, however, we find that the degree of polarization of the beam tends to the value that it has in the source plane.  相似文献   

4.
General analytical formulae for the kurtosis parameters K (K parameters) of the arbitrary electromagnetic (AE) beams propagating through non-Kolmogorov turbulence are derived, and according to the unified theory of polarization and coherence, the effect of degree of polarization (DOP) of an electromagnetic beam on the K parameter is studied. The analytical formulae can be given by the second-order moments and fourth-order moments of the Wigner distribution function for AE beams at source plane, the two turbulence quantities relating to the spatial power spectrum, and the propagation distance. Our results can also be extended to the arbitrary beams and the arbitrary spatial power spectra of Kolmogorov turbulence or non-Kolmogorov turbulence. Taking the stochastic electromagnetic Gaussian Schell-model (SEGSM) beam as an example, the numerical examples indicate that the K parameters of a SEGSM beam in non-Kolmogorov turbulence depend on propagation distance, the beam parameters and turbulence parameters. The K parameter of a SEGM beam is more sensitive to effect of turbulence with smaller inner scale and generalized exponent parameter. A non-polarized light has the strongest ability of resisting turbulence (ART), however, a fully polarized SEGSM beam has the poorest ART.  相似文献   

5.
Based on the Huygens–Fresnel principle and the unified theory of coherence and polarization of partially coherent beams, we investigate the propagation characteristics of a partially coherent radially polarized doughnut (PCRPD) beam in a turbulent atmosphere. It is found that, after propagating through a turbulent atmosphere, the doughnut beam spot is changed into a circular Gaussian beam. Moreover, the degree of coherence, the degree of polarization and the degree of cross-polarization of the beam will change on propagation, and this change is dependent upon the degree of coherence of the source and atmospheric turbulence.  相似文献   

6.
On the basis of the generalized diffraction integral formula for an ABCD optical system in the spatial domain, a propagation law for the generalized Stokes parameters of a stochastic electromagnetic beam passing through an ABCD optical system is obtained. We describe the Stokes parameters of the source as linear combinations of the elements of the cross-spectral density matrix, and study the changes in the spectral degree of polarization and in the state of the polarization ellipse of a stochastic electromagnetic Gaussian Schell-model beam propagating through a gradient-index fiber with the help of generalized Stokes parameters and the cross-spectral density matrix. The medium has significant effect on the change of the spectral degree of polarization. However, when the correlation coefficients of the source satisfy the relation delta(xx)=delta(yy)=delta(xy)=delta(yx), the medium does not influence the spectral degree of polarization.  相似文献   

7.
On the basis of the generalized diffraction integral formula for misaligned optical systems in the spatial domain, an analytical propagation expression for the elements of the cross-spectral density matrix of a random electromagnetic beam passing through a misaligned optical system in turbulent atmosphere is derived. Some analyses are illustrated by numerical examples relating to changes in the state of polarization of an electromagnetic Gaussian Schell-model beam propagating through such an optical system. It is shown that the misalignment has a significant influence on the intensity profile and the state of polarization of the beam, but the influence becomes smaller for the beam propagating in strong turbulent atmosphere. The method in this paper can be applied for sources that are either isotropic or anisotropic. It is shown that the isotropic sources and the anisotropic sources have different polarization properties on beam propagation.  相似文献   

8.
9.
Propagation of a partially coherent optical beam inside a linear, nondispersive, dielectric medium is studied, taking into account the vector nature of the electromagnetic field. Propagation-induced polarization changes are studied by using the Gaussian-Schell model for the cross-spectral-density tensor. The degree of polarization changes with propagation and also becomes nonuniform across the beam cross section. The extent of these changes depends on the coherence radius associated with the cross-correlation function. For optical beams with symmetric spectra, the bandwidth of the source spectra is found to play a relatively minor role.  相似文献   

10.
《Journal of Modern Optics》2013,60(11):871-892
An electromagnetic beam is defined using mathematical properties of the associated angular spectrum of plane waves. It is found that the usual paraxial theory for the Hermite Gaussian or Laguerre Gaussian beams, produced by some lasers, can be replaced by a more general theory which is precise according to Maxwell's equations. In this theory the beams exhibit an amplitude distribution over any plane normal to the direction of propagation which can be described using prolate spheroidal wave functions. As the degree of collimation is increased, these beams asymptotically take on the familiar Gaussian amplitude cross section. However, as the divergence from focus is increased, these beams asymptotically approach modified dipole fields. It is found that two, mutually exclusive, classes of beam fields exist. For each beam in one class there is always a complementary beam in the other class. As the degree of collimation is increased, complementary beams become almost identical. Complementary beams contain electromagnetic components which are related to one another in the same manner as between the fields of similar electric and magnetic multipoles.  相似文献   

11.
The change of coherence and polarization of an electromagnetic beam modulated by a random anisotropic phase screen passing through any optical system is found within the framework of complex ABCD-matrix theory This means that the formalism can treat imaging and Fourier transform and free-space optical systems, as well as fractional Fourier transform systems, with finite-size limiting apertures of Gaussian transmission shape. Thus, the current paper shall be considered as a continuation, extension, and generalization of a previous work by Shirai and Wolf [J. Opt. Soc. Am. A21, 1907 (2004)]. It will be shown that the inclusion of apertures in the optical system strongly influences not only the propagation of spatial coherence but also the degree of polarization of a propagating field. Analytical expressions of coherence and polarization propagation will be given in terms of the matrix elements for any complex optical system.  相似文献   

12.
Theoretical study of propagation behaviour of partially coherent divergent Gaussian beams through oceanic turbulence has been performed. Based on the previously developed knowledge of propagation of a partially coherent beam in atmosphere, the spatial power spectrum of the refractive index of ocean water, extended Huygens–Fresnel principle and the unified theory of coherence and polarization, analytical formulas for cross-spectral density matrix elements are derived. The analytical formulas for intensity distribution, beam width and spectral degree of coherence are determined by using cross-spectral density matrix elements. Then, the effects of some source factors and turbulent ocean parameters on statistical properties of divergent Gaussian beam propagating through turbulent water are analysed. It is found that beam’s statistical propagation behaviour is affected by both environmental and source parameters variations.  相似文献   

13.
Abstract

We experimentally investigate the interaction of linearly polarized light with a holographic grating in a conical mounting. Due to the periodic structure, the polarization properties of the reflected zeroth-order beam are highly sensitive to the conical angle. When a focused Gaussian beam with linear polarization impinges on an air–grating interface at an exceptional conical angle, a spatial splitting of the reflected beam is observed behind a polarizer. We find that it can be interpreted using the anisotropy of the polarization distribution in holographic grating reflection.  相似文献   

14.
Zeng X  Liang C 《Applied optics》1996,35(16):3068-3071
The far-field properties of a plane source with a constant phase distribution are presented. It is found, for the first time to our knowledge, that for any plane source the theoretical upper limit of the far-field divergence angle is shown to be 65.5°. This result is different from what previous propagation and diffraction theories predicted, and when the size of the source approaches zero, the far-field behavior of the plane source is also different from a spherical wave in half-space.  相似文献   

15.
Evolution properties of the complex degree of coherence of a partially coherent Laguerre–Gaussian beam (LGB) on propagation in free space and turbulent atmosphere are studied comparatively with the help of the general propagation formula for such beam. It is found that the behavior of the complex degree of coherence of a partially coherent LGB on propagation in turbulent atmosphere is much different from that in free space and is closely related to the initial beam parameters and the structure constant of the turbulent atmosphere. The distribution of the modulus of the complex degree of coherence of the partially coherent LGB finally becomes of Gaussian distribution at long propagation distance in turbulent atmosphere, and it becomes of Gaussian distribution more slowly with the increase of the mode orders, beam width and wavelength. Our results will be useful in long-distance free-space optical communications.  相似文献   

16.
The spectral degree of coherence and of polarization of some model electromagnetic beams modulated by a polarization-dependent phase-modulating device, such as a liquid-crystal spatial light modulator, acting as a random phase screen are examined on the basis of the recent theory formulated in terms of the 2 x 2 cross-spectral density matrix of the beam. The phase-modulating device is assumed to have strong polarization dependence that modulates only one of the orthogonal components of the electric vector, and the phase of the phase-modulating device is assumed to be a random function of position imitating a random phase screen and is assumed to obey Gaussian statistics with zero mean. The propagation of the modulated beam is also examined to show how the spectral degrees of coherence and of polarization of the beam change on propagation, even in free space. The results are illustrated by numerical examples.  相似文献   

17.
We investigate the propagation of an Airy beam along the optical axis of a uniaxial medium, and we find that the propagation property of the Airy beam is determined by the ordinary refractive index of uniaxial crystals and is independent of the ratio of the extraordinary to ordinary refractive index. We also know that the polarization state of linearly polarized Airy beams changes gradually during the propagation. This shows that the propagation properties of the Airy beam in uniaxial crystals along the optical axis is distinctly different from that orthogonal to the optical axis.  相似文献   

18.
Conditions ensuring that the polarization properties at the output plane of a Young interferometer fed by an electromagnetic partially coherent beam are the same as those at the pinholes are derived. Such a behavior is interpreted in terms of the vector modes of the electromagnetic source corresponding to the field emerging from the Young pinholes.  相似文献   

19.
Stochastic electromagnetic beams focused by a bifocal lens   总被引:2,自引:0,他引:2  
In this paper, we study the focusing of a stochastic electromagnetic beam by a bifocal lens. By taking the electromagnetic Gaussian Schell-model (EGSM) beam as an example, the changes in the spectral density, in the spectral degree of coherence, and in the spectral degree of polarization of the EGSM beam as the beam is focused by an unapertured bifocal lens are investigated. It is shown that the spectral density, the spectral degree of coherence, and the spectral degree of polarization of the focused electromagnetic EGSM beams depend upon the coherence lengths and focal lengths of the bifocal lens. The influence of the coherence lengths and the focal lengths on the focused spectral density, the spectral degree of coherence, and the spectral degree of polarization are investigated in great detail.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号