首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
McLeod E  Arnold CB 《Applied optics》2008,47(20):3609-3618
Current methods for generating Bessel beams are limited to fixed beam sizes or, in the case of conventional adaptive optics, relatively long switching times between beam shapes. We analyze the multiscale Bessel beams created using an alternative rapidly switchable device: a tunable acoustic gradient index (TAG) lens. The shape of the beams and their nondiffracting, self-healing characteristics are studied experimentally and explained theoretically using both geometric and Fourier optics. By adjusting the electrical driving signal, we can tune the ring spacings, the size of the central spot, and the working distance of the lens. The results presented here will enable researchers to employ dynamic Bessel beams generated by TAG lenses.  相似文献   

2.
Anisoplanatism limits the correction field of adaptive optics (AO). In the case of Shack-Hartmann measurement performed on extended sources it may also strongly affect wavefront estimation accuracy. An analytical formalism has been previously proposed to quantify anisoplanatism slope measurement error. It is exploited here to derive the most relevant quantity in AO, the wavefront error. Analytical and end-to-end simulation results are compared in three cases: solar observation, weakly perturbed near-to-ground observation, and strongly perturbed near-to-ground observation. In every case, anisoplanatism wavefront error takes significant values. The accuracy of the analytical model is investigated in detail. Three contributions to the slope error previously identified are considered: phase anisoplanatism, scintillation anisoplanatism, and coupling between scintillation and phase anisoplanatism. The influence of both scintillation and coupling contributions to the wavefront error is confirmed here.  相似文献   

3.
Ellerbroek BL 《Applied optics》1997,36(36):9456-9467
Mellin transform techniques are applied to evaluate the covariance of the integrated turbulence-induced phase distortions along a pair of ray paths through the atmosphere from two points in a telescope aperture to a pair of sources at finite or infinite range. The derivation is for the case of a finite outer scale and a von Karman turbulence spectrum. The Taylor hypothesis is assumed if the two phase distortions are evaluated at two different times and amplitude scintillation effects are neglected. The resulting formula for the covariance is a power series in one variable for the case of a fixed atmospheric wind velocity profile and a power series in two variables for a fixed wind-speed profile with a random and uniformly distributed wind direction. These formulas are computationally efficient and can be easily integrated into computer codes for the numerical evaluation of adaptive optics system performance. Sample numerical results are presented to illustrate the effect of a finite outer scale on the performance of natural and laser guide star adaptive optics systems for an 8-m astronomical telescope. A hypothetical outer scale of 10 m significantly reduces the magnitude of tilt anisoplanatism, thereby improving the performance of a laser guide star adaptive optics system if the auxiliary natural star used for full-aperture tip/tilt sensing is offset from the science field. The reduction in higher-order anisoplanatism that is due to a 10-m outer scale is smaller, and the off-axis performance of a natural guide star adaptive optics system is not significantly improved.  相似文献   

4.
A lens with a graded refractive index is required for vision in aquatic animals with camera-type eyes. This optical design entails a radial gradient of protein density, with low density in external layers and high density in internal layers. To maintain the optical stability of the eye, different material properties are required for proteins in different regions of the lens. In low-density regions of the lens where slight protein aggregation causes significant light scattering, aggregation must be minimized. Squid lens S-crystallin proteins are evolutionarily derived from the glutathione S-transferase protein family. We used biochemistry, optical modelling and phylogenetics to study the evolution and material properties of S-crystallins. S-crystallins are differentially expressed in a radial gradient, suggesting a role in refractive index. This gradient in S-crystallin expression is correlated with their evolutionary history and biochemistry. S-crystallins have been under positive selection. This selection appears to have resulted in stabilization of derived S-crystallins via mutations in the dimer interface and extended electrostatic fields. These derived S-crystallins probably cause the glassy organization and stability of low refractive index lens layers. Our work elucidates the molecular and evolutionary mechanisms underlying the production and maintenance of camera-like optics in squid lenses.  相似文献   

5.
Abstract

In this work, we show the design of a diffractive-refractive hybrid doublet to achromatize the human eye. It takes advantage of the achromatizing properties of diffractive elements combined with conventional optics. The performance of the doublet has been compared with conventional systems, which have more elements. The results show that it is a useful alternative to those systems.  相似文献   

6.
Lens axicons, i.e., lenses or lens systems designed to work like axicons, can be a simple and inexpensive way of generating the characteristic axicon focal line. In the design of most lens axicons, only on-axis properties have been considered. We present the design of a lens axicon with improved off-axis characteristics. It is constructed from a singlet lens but with a double-pass feature that allows for a line of uniform width and a stop positioned to minimize aberrations. We perform off-axis analysis and experiments for this system and for another lens axicon, one designed for its on-axis characteristics. We conclude that the off-axis performance of the double-pass axicon is better than both that of an ordinary cone axicon and that of the other lens axicon.  相似文献   

7.
Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field.  相似文献   

8.
To implement adaptive optics compensation for propagation through deep turbulence, the concept of gradient descent tomography has been developed. Here two or more deformable mirrors are controlled by an efficient iterative algorithm that optimizes the integral I(2) image-sharpening metric. In this work a difficult case involving imaging over a 2 km path with a C(n)(2) of 2 x 10(-13)m(-2/3) is considered. For a wavelength of 1.06 microm and a 10-cm-diameter aperture, lambda/D is seven times the isoplanatic angle (theta(0)=1.54 microrad), and the Rytov number is 5.5. For three points placed along a line spanning approximately 70 isoplanatic patch sizes all three points are compensated somewhat, illustrating that anisoplanatism is addressed. The fact that the corresponding performance improvement ratios are 1.20, 1.34, and 3.26 in the presence of such strong scintillation and anisoplanatism is quite significant.  相似文献   

9.
廖周  汤国茂 《光电工程》2003,30(5):7-10
以几何光学的矩阵变换为基础,通过光线追迹的方法,对四象限分光的多透镜成像复杂光学系统进行仿真建模。由所得到的基本参数的关系曲线,优化确定系统的放大镜放大系数为20,分光镜离轴距离为3mm,系统出瞳直径1mm。对复杂光学系统参数的优化提供了新的思路和方法。  相似文献   

10.
Laser guide star (LGS) atmospheric tomography is described in the literature as integrated minimum-variance tomographic wavefront reconstruction from a concatenated wavefront-sensor measurement vector consisting of many high-order, tip/tilt (TT)-removed LGS measurements, supplemented by a few low-order natural guide star (NGS) components essential to estimating the TT and tilt anisoplanatism (TA) modes undetectable by the TT-removed LGS wavefront sensors (WFSs). The practical integration of these NGS WFS measurements into the tomography problem is the main subject of this paper. A split control architecture implementing two separate control loops driven independently by closed-loop LGS and NGS measurements is proposed in this context. Its performance is evaluated in extensive wave optics Monte Carlo simulations for the Thirty Meter Telescope (TMT) LGS multiconjugate adaptive optics (MCAO) system, against the delivered performance of the integrated control architecture. Three iterative algorithms are analyzed for atmospheric tomography in both cases: a previously proposed Fourier domain preconditioned conjugate gradient (FDPCG) algorithm, a simple conjugate gradient (CG) algorithm without preconditioning, and a novel layer-oriented block Gauss-Seidel conjugate gradient algorithm (BGS-CG). Provided that enough iterations are performed, all three algorithms yield essentially identical closed-loop residual RMS wavefront errors for both control architectures, with the caveat that a somewhat smaller number of iterations are required by the CG and BGS-CG algorithms for the split approach. These results demonstrate that the split control approach benefits from (i) a simpler formulation of minimum-variance atmospheric tomography allowing for algorithms with reduced computational complexity and cost (processing requirements), (ii) a simpler, more flexible control of the NGS-controlled modes, and (iii) a reduced coupling between the LGS- and NGS-controlled modes. Computation and memory requirements for all three algorithms are also given for the split control approach for the TMT LGS AO system and appear feasible in relation to the performance specifications of current hardware technology.  相似文献   

11.
12.
13.
A scalable adaptive optics (AO) control system architecture composed of asynchronous control clusters based on the stochastic parallel gradient descent (SPGD) optimization technique is discussed. It is shown that subdivision of the control channels into asynchronous SPGD clusters improves the AO system performance by better utilizing individual and/or group characteristics of adaptive system components. Results of numerical simulations are presented for two different adaptive receiver systems based on asynchronous SPGD clusters-one with a single deformable mirror with Zernike response functions and a second with tip-tilt and segmented wavefront correctors. We also discuss adaptive wavefront control based on asynchronous parallel optimization of several local performance metrics-a control architecture referred to as distributed adaptive optics (DAO). Analysis of the DAO system architecture demonstrated the potential for significant increase of the adaptation process convergence rate that occurs due to partial decoupling of the system control clusters optimizing individual performance metrics.  相似文献   

14.
Sutton GW 《Applied optics》2003,42(18):3480-3487
An optimal filter algorithm for adaptive optics provides a powerful method for phase correction for propagation through the Earth's turbulent atmosphere involving anisoplanatism. In the new algorithm the outward phase correction is the sum of the product of a weighting function (the optimal filter) and all the wave-front measurements at the pupil, greatly improving the Strehl ratio. Two simplified cases are presented for illustration: (1) a collimated beam traversing a layer of uniform isotropic turbulence (angle anisoplanatism) and (2) focus anisoplanatism. It compares favorably with tomographic techniques. The technique can be extended to the case of thick, strong turbulence in the far field of a subaperture of an adaptive optics system.  相似文献   

15.
The effect of increased high-order wavefront aberrations on image resolution was investigated, and the performance of adaptive optics (AO) for correcting wavefront error in the presence of increased light scatter was assessed in a model eye. An AO section imaging system provided an oblique view of a model retina and incorporated a wavefront sensor and deformable mirror for measurement and compensation of wavefront aberrations. Image resolution was quantified by the width of a Lorentzian curve fitted to a laser line image. Wavefront aberrations were significantly reduced with AO, resulting in improvement of image resolution. In the model eye, image resolution was degraded with increased high-order wavefront aberrations (horizontal coma and spherical) and improved with AO correction of wavefront error in the presence of increased light scatter. The findings of the current study suggest that AO imaging systems can potentially improve image resolution in aging eyes with increased aberrations and scatter.  相似文献   

16.
A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.  相似文献   

17.
We introduce a model of the human eye for which we take into consideration the laminated nature of lens fibers. The thickness of each lamina is 5.6 μm; thus the lens comprises 300 eccentric lenses of minute dimensions. The index gradient of the lens is such that the index of refraction increases exponentially from the lens core to its peripheral zone. A vector ray-tracing technique is employed to study the optical haracteristics of the system. Both paraxial and marginal rays are simulated, and the angles of incidence vary from 0° to ±20°. Special attention is given to the meridional caustic surfaces as well as the wave-front distortion of the refracted rays. A quasi-Newton optimization technique is employed to obtain the best parameters for the system. A computer modeling program, written in FORTRAN 77, is used to simulate a ray's refraction through the multisurfaces of the eye. The results show full agreement with previous data and that the cornea is responsible for eliminating possible spherical aberration of the system.  相似文献   

18.
Gao Q  Jiang Z  Yi S  Xie W  Liao T 《Applied optics》2012,51(17):3922-3929
We describe an adaptive optics (AO) system for correcting the aero-optical aberration of the supersonic mixing layer and test its performance with numerical simulations. The AO system is based on the measurement of distributed Strehl ratios and the stochastic parallel gradient descent (SPGD) algorithm. The aero-optical aberration is computed by the direct numerical simulation of a two-dimensional supersonic mixing layer. When the SPGD algorithm is applied directly, the AO cannot give effective corrections. This paper suggests two strategies to improve the performance of the SPGD algorithm for use in aero-optics. The first one is using an iteration process keeping finite memory, and the second is based on the frozen hypothesis. With these modifications, the performance of AO is improved and the aero-optical aberration can be corrected to some noticeable extent. The possibility of experimental implementation is also discussed.  相似文献   

19.
This paper describes a new methodology of estimating free-space optical communications link budgets to be expected in conditions of severe turbulence. The approach is derived from observing that the ability of an adaptive optics (AO) system to compensate turbulence along a path is limited by the transmitter and receiver Rayleigh range, proportional to the diameter of the optics squared and inverse of the wavelength of light utilized. The method uses the Fried parameter computed over the range outside of the transmitter and receiver Rayleigh ranges, to calculate the Strehl ratios that yield a reasonable prediction of the light impinging on the receiving telescope aperture and the power coupling into the fiber. Comparisons will be given between theory and field measurements. These comparisons show that AO is most effective within the Rayleigh ranges, or when an atmospheric gradient is present, and lesser so when the total range is much greater than the sum of the Rayleigh ranges.  相似文献   

20.
Anand A  Chhaniwal VK 《Applied optics》2007,46(11):2022-2026
The use of digital holographic intrerferometry in the testing of simple thin lenses is explored. Focal length, radius of curvature, and refractive index are the lens parameters that can be determined using this method. The digital holograms using the lens under test are recorded at various positions of the test lens using off-axis geometry. This is combined with a digitally computed plane wavefront to determine the curvature of the light beam emerging from the test lens. Focal length is the position of the test lens where a single fringe results. The radius of curvature of the test lens is also determined similarly using a long focal length lens to concentrate a collimated beam onto the test lens. The nonuniformities on the lens surface could also be found by using this method. The implementation of the method is shown by using computer simulations in the case of biconvex lenses. The method can be utilized to measure the parameters of plano-convex and concave lenses also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号