首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Membrane separation technology offers a potential application in the processing of crude palm oil. Ceramic membranes with different pore diameters (0.45 and 0.2 micron) were used to conduct the study on micromembrane process. Quality parameters of membrane-processed oils examined included free fatty acid (FFA), carotene, fatty acid composition (FAC), phosphorus and iron contents. The effect of operating parameters such as transmembrane pressure, feed flow and time on permeate flux were evaluated. It was found that 'Ceraflo'ceramic membrane with a pore size of 0.45 micron was only able to reject 14% of phosphorus from the crude oil. Ceramic membrane with pore size of 0.2 micron showed a better phosphorus rejection of 56.8%. The permeate was found to contain 7.13 ppm of phosphorus. The 0.2 micron membrane was also able to remove more than 80% of the iron from crude palm oil. Pore sizes for both membranes were not small enough to remove other components such as FFA, and carotene. Both membranes showed a similar trend in which the permeate flux increased with transmembrane pressure and feed flow until a certain limit where the flux declined with increasing pressure and feed flow. The limits in transmembrane pressures for membrane with pore sizes of 0.45 and 0.2 micron were 1.65 and 1.25 bar, respectively. Whereas the limits in feed flow for 0.45 micron and 0.2 micron membranes were 9.2 and 9.8 L/min  相似文献   

2.
An ultrafiltration‐based approach was integrated in the preparation of phosvitin (PVs) from delipidated egg yolk proteins. An attempt was made to concentrate PVs as well as to desalt by means of the diafiltration technique. Primary experiments were devoted to optimise the ultrafiltration performance as function of parameters such as the effects of pH, feed concentration and transmembrane pressure on permeate flux with the 10‐kDa molecular weight cut‐off (MWCO) polyethersulfone membrane at laboratory scale. Higher permeate flux values were observed at low concentration and at alkaline pH, whatever transmembrane pressure studied. Then, desalting of PVs was carried out at 50 °C with 10‐ and 30‐kDa MWCO membranes. The results showed that desalting of PVs was obtained with both the 10‐ and 30‐kDa MWCO membranes and with a few loss of protein in the permeate side.  相似文献   

3.
Ten nanofiltration flat-sheet membranes and eight tight ultrafiltration membranes with nominal MWCOs ranging from 0.2 to 150 kDa were tested to concentrate anthocyanin extract from roselle. A pilot system was used, which featured a membrane cell with an effective area of 0.0155 m2. Permeate fluxes were recorded for transmembrane pressures between 0.5 and 3.0 MPa, while keeping all other operating conditions constant (volumetric reduction ratio 1, 35 °C). Retention values of total soluble solids, acidity and anthocyanins increased with transmembrane pressure. With similar permeate fluxes at average transmembrane pressure, retention of anthocyanins is significantly higher for nanofiltration membranes than for ultrafiltration membranes. A membrane was then selected for an industrial trial on the basis of its flux, retention of compounds of interest and energy consumption per liter of permeate. The trial using a 2.5-m2 filtration surface, could concentrate roselle extract from 4 to 25 g total soluble solids per 100 g, with 100% retention of anthocyanins. No significant damages were observed when comparing concentrate quality with the initial roselle extract.  相似文献   

4.
膜分离技术纯化栀子黄色素的研究   总被引:8,自引:0,他引:8  
李媛媛  高彦祥 《食品科学》2006,27(6):113-117
以栀子黄色素萃取液为原料,研究陶瓷膜微滤过程中不同膜孔径、不同操作压力对渗透通量和色素液品质的影响,确定孔径200nm的陶瓷膜、0.125MPa压力下微滤为栀子黄色素纯化的最佳工艺条件。栀子黄微滤渗透液再经聚酰胺膜纳滤,1.5MPa压力下浓缩倍数达到3倍以上。  相似文献   

5.
The effects of membrane pore size and operating pressure on filtration flux, membrane fouling and solute rejections of soymilk during ultrafiltration were studied. Soymilk was concentrated from an initial level of 6.5% solid content to 20% solid content using ultrafiltration membranes. Hollow fibre cross‐flow type cartridges having molecular weight cut‐off (MWCO) as 1, 10 and 30 kDa were used in the experiments. Filtration data were satisfactorily fitted to De La Garza and Boulton's exponential model to find the exponential fouling coefficient (k) and the membrane resistance (Rm). The permeate fluxes obtained in 10 and 30‐kDa MWCO membranes were found to be approximately four times higher than that of 1‐kDa MWCO membrane, at transmembrane pressure between 100 and 240 kPa. The average flux obtained was 0.7, 3.15 and 2.7 L m?2‐h for 1, 10 and 30‐kDa MWCO membranes, respectively. The Rm value of membranes was found to decrease as the MWCO of membranes increased and transmembrane pressure decreased. The total solid content of permeates obtained by these membranes was between 0.45% and 1.4%. Membrane‐concentrated soymilk was found to have lighter colour and almost half the value of viscosity compared with evaporated milk.  相似文献   

6.
Raw depectinized apple juice was clarified and sterilized in a cross‐flow pilot scale ultrafiltration system using ceramic tubular membranes (MEMBRALOX®, Pall) with mean pore size of 100 nm. The permeate flux significantly decreased with time until a steady‐state was established. An increase in filtration pressure increased the permeate flux while there is an optimum pressure (about 0.85 bar) above which the increase of pressure does not increase the flux significantly. The higher the cross‐flow velocity was, the higher was the transmembrane flux. When the operating temperature increased, the permeation rate increased subsequently. Analytical measurement showed that suspended solids and turbidity could almost be removed by the ceramic ultrafiltration membrane, but pH, acidity, sugar and soluble solid content of the juices showed no significant change. The bacteria challenge tests with Micrococcus flavus showed that the logarithm value of the bacteria reduction rate came up to above 9 in the cross‐flow tubular ceramic system. When the permeate was collected in sterile bottles in a laminar flow shell and kept at 4 °C, 8 °C, 25 °C and 35 °C, for 28 days, the apple juice experienced minimal changes in physicochemical properties at lower temperatures of 4 °C, or 8 °C. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
Our research objective was to measure percent removal of whey protein from separated sweet whey using 0.1-µm uniform transmembrane pressure ceramic microfiltration (MF) membranes in a sequential batch 3-stage, 3× process at 50°C. Cheddar cheese whey was centrifugally separated to remove fat at 72°C and pasteurized (72°C for 15 s), cooled to 4°C, and held overnight. Separated whey (375 kg) was heated to 50°C with a plate heat exchanger and microfiltered using a pilot-scale ceramic 0.1-µm uniform transmembrane pressure MF system in bleed-and-feed mode at 50°C in a sequential batch 3-stage (2 diafiltration stages) process to produce a 3× MF retentate and MF permeate. Feed, retentate, and permeate samples were analyzed for total nitrogen, noncasein nitrogen, and nonprotein nitrogen using the Kjeldahl method. Sodium dodecyl sulfate-PAGE analysis was also performed on the whey feeds, retentates, and permeates from each stage. A flux of 54 kg/m2 per hour was achieved with 0.1-µm ceramic uniform transmembrane pressure microfiltration membranes at 50°C. About 85% of the total nitrogen in the whey feed passed though the membrane into the permeate. No passage of lactoferrin from the sweet whey feed of the MF into the MF permeate was detected. There was some passage of IgG, bovine serum albumen, glycomacropeptide, and casein proteolysis products into the permeate. β-Lactoglobulin was in higher concentration in the retentate than the permeate, indicating that it was partially blocked from passage through the ceramic MF membrane.  相似文献   

8.
Banana juice was clarified by cross flow ultrafiltration using a hollow fiber module under total recycle mode. Three surface-modified polysulfone-based membrane cartridges with molecular weight cut-offs 10, 27, and 44 kDa were used to identify the most suitable membrane. The effects of operating conditions—namely, transmembrane pressure drop and cross flow rate on the permeate flux and permeate quality, have been investigated. The quality of the clarified juice was evaluated in terms of viscosity, clarity, color, alcohol insoluble solids, total soluble sugar, pH, protein, and polyphenol content. The results showed that the membrane of molecular weight cut-off 27 kDa was suitable. The permeate flux depended strongly on the transmembrane pressure drop, but its variation on cross flow rate was insignificant. The clarified juice had high clarity and no pectineous materials (in terms of alcohol insoluble solids). It contained significant amount of polyphenol and protein. The storage study indicated that the juice could be successfully stored for 1 month without any additive and preservative, keeping its natural nutritional qualities, taste, and flavor intact.  相似文献   

9.
The combinatorial optimality of membrane morphology and process parameters during dead end microfiltration of bottle gourd juice have been addressed in this article. Saw dust and kaolin based low cost ceramic membranes with varied morphology have been chosen to evaluate upon their microfiltration performance. For the chosen membranes, fresh, paper filtered and centrifuged juice samples were considered along with transmembrane pressure differential as process parameters. Combinatorial optimality was based on flux decline trends, fitness of fouling models, irreversible and reversible fouling data, irreversible permeation resistance and nutritional analysis of the permeate samples. An interesting feature of the article had been with respect to feed constitution playing a critical role in influencing the optimal choice of membrane morphology and transmembrane pressure differentials. Among all cases, paper filtered bottle gourd juice, 0.75 μm membrane and 137.9 kPa transmembrane pressure were found to be the best choice in terms of minimal irreversible fouling, lowest protein content, good clarity, good polyphenol and antioxidant activity in the permeate and appropriate flux.  相似文献   

10.
聚醚砜超滤膜分离菜籽油/乙醇混合物的研究   总被引:1,自引:1,他引:0  
用聚醚砜超滤膜分离菜籽油/乙醇混合物,研究了混合物中菜籽油质量分数(20%~60%)、操作压力(0.15~0.3 MPa)和时间(10~60 min)等参数对分离效果的影响,并探讨了该膜渗透通量的数学模型.结果表明:膜的渗透通量随着操作压力的升高而升高,随时间的延长和混合物中菜籽油质量分数的提高而降低;膜对油脂的截留率随着操作压力的升高、混合物中菜籽油质量分数的提高而降低.当操作压力为0.15 MPa、菜籽油/乙醇混合物质量分数为20%时,得到最高的油脂截留率为95.03%.  相似文献   

11.
Clarification of fruit and vegetable juice is one of the integrated parts of modern industrial juice processing. This paper describes the clarification of tomato juice through microfiltration process. In this regard, the influence of transmembrane pressure (1, 2 and 3 bar), cross‐flow velocity which corresponds with Reynolds number (300, 1500 and 2500) and temperature (30, 40 and 50 °C) on permeate flux and some properties of clarified juice such as colour, turbidity, density, viscosity, pH and total soluble solid have been studied. The results revealed that the investigated parameters had an increasing effect on the permeate flux and colour and the greatest effect on the permeate flux and colour was supplied by cross‐flow velocity. The other permeate properties did not significantly change with variations of the operating parameters. Eventually, the statistical analysis indicated that the interactional effect of cross‐flow velocity and TMP on the permeate flux was significant.  相似文献   

12.
Tangerine (Citrus reticulata blanco) juice clarification by crossflow microfiltration and ultrafiltration using polysulphone flat sheet membranes with nominal molecular weight cut off of 25,000, 50,000, 100,000 and 0.1 μm, 0.2 μm pore sizes was studied. the juice was pretreated by polygalacturonase and pH adjustment. the treated juice was clarified with a laboratory scale filtration unit with effective filtration area of 14 cm2. Filtration conditions were transmembrane pressure of 93 to 194 kPa, crossflow velocity of 0.96 to 3.5 m/s and 25°C. Membrane performance was evaluated in terms of volume flux and clarity (% transmittance) of the permeate. Pretreatment of the juice by polygalacturonase and adjustment to pH 2 with HCl resulted in a clearer supernatant than enzyme treatment alone. Maximum flux was obtained with the 0.1 μm microfiltration membrane. Flux increased with transmembrane pressure and crossflow velocity. Flux at 194 kPa and 3.5 m/s was 69 L per square meter per hour. Permeate clarity was better at higher transmembrane pressure and lower velocity, due to the effect of the polarized/fouling layer of solute on the membrane surface, which acted as a secondary “dynamic” filter.  相似文献   

13.
Microfiltration of bitter gourd (Momordica charantia) extract using hollow fiber membrane module was carried out in the present study. To identify the dominant fouling mechanism, flux decline behavior was examined using Field model. At lower transmembrane pressure, pore blocking mechanism was found to be more important, while cake filtration was dominant at higher pressure. Higher cross flow rate reduced filtration constant indicating slower rate of membrane fouling. Additionally, surface and particle size analyses were undertaken to validate the findings of modeling. Scanning electron microscope analysis clearly showed prevalence of pore blocking mechanism at lower transmembrane pressure drop, whereas cake filtration was dominant fouling mechanism at higher pressure. Fourier transform infrared spectroscopy analysis supported the role of cake layer as a secondary membrane retaining some amount of polyphenols. Analysis of flux decline ratio also confirmed that for transmembrane pressure of 104 kPa and beyond, cake layer became compact, and hence, increase in cross flow rate was unable to influence the improvement of permeate flux. The current study provides an insight into the fouling mechanism involved in scaling up of clarification of bitter gourd extract for successful processing of this medicinal herb.  相似文献   

14.
Pectate oligosaccharides were separated from enzymatically hydrolyzed pectate by using ultrafiltration (UF) and nanofiltration (NF) membranes. The UF treatment was performed at a transmembrane pressure of 0.15 MPa and flow velocity of 0.6 m.s(-1), and nonhydrolyzed pectate was removed almost completely. The NF treatment was carried out at a transmembrane pressure of 0.5 MPa and flow velocity of 0.6 m.s(-1), and large amounts of monogalacturonic acid and sucrose, the contaminants included in the UF permeate were separated. Pectate oligosaccharides obtained by the diafiltration treatment of the NF concentrate were mainly composed of di- to pentasaccharides and exhibited root-growth-promoting activity in lettuce (approximately 1.8-fold) compared with the control. In particular, penta-, tetra-, and disaccharides were found to have strong activity.  相似文献   

15.
Effects of transmembrane pressure on membrane performance and permeate flux were studied using pure water and cottage cheese whey. The transmembrane pressure was varied from 0·8 to 30 bar and the temperature was maintained at 21 ± 1°C. Mechanical deformation and compression of the ultrafiltration membrane used (MW cut-off 25 000 daltons) were considered to be the main factors responsible for the non-linearity of the relationship between processing pressure and water permeate flux rate. During membrane processing of cottage cheese whey, a further deviation from linearity was observed, possibly due to the effect of membrane fouling. Assuming that compaction effects were dependent only on the transmembrane pressure applied and not on the type of liquid being processed, compaction effects appeared to exceed fouling markedly in the pressure range 4–30 bar. Fouling and compaction effects were of the same order at pressures below 3 bar. In spite of the compaction phenomena, no substantial change in total solids flux was observed in membrane processing of cottage cheese whey.  相似文献   

16.
The purpose of this work is theoretical and experimental evaluation of fouling effects on flux performance in clarification of freshly squeezed orange juice by cross-flow microfiltration. To identify optimum operating conditions to minimize fouling effects, juice was microfiltered on a laboratory scale plant varying axial velocity and transmembrane pressure difference. The observed flux decay was modeled using a modified form of the differential equation used to describe classical dead-end filtration processes. The mechanism of fouling during cross-flow microfiltration was identified by estimation of the model parameters according to a nonlinear regression optimization procedure. Analysis of the results revealed that the separation process is controlled by a cake filtration fouling mechanism as the juice is fed at relatively low velocity (i.e., Re = 5000) and the system is operated at low transmembrane pressure difference. In these operating conditions the permeate flux decays within the first 20–30 min to gradually achieve a limit value. At higher Reynolds number (Re = 15,000), an increase in applied transmembrane pressure (i.e., from 0.3 to 1 bar) allows the limit permeate flux to increase by a factor of about 4. In these conditions the filtration process is controlled by a complete pore blocking fouling mechanism, and the permeate flux becomes approximately invariant with respect to time, and a negligible decay may be observed. Evaluation of specific energy consumption involved in the filtration process is reported.  相似文献   

17.
Ultrafiltration/Reverse Osmosis Concentration of Lobster Extract   总被引:1,自引:0,他引:1  
A membrane concentration system consisting of tubular polysulphone ultrafiltration (UF) and polyamide reverse osmosis (RO) was evaluated for concentrating key water soluble flavor compounds from lobster extracts. Major flavor-giving compounds in the extract were glutamic acid, glycine, arginine, uridine 5′-monophosphate (UMP), succninic acid and glucose. Factors affecting performance of the UF/RO systems, such as flow rate, feed solid level, temperature and pressure, on permeate flux and solids rejection were measured. The optimum UF conditions were 1.5% feed solid level, 15 L/min feed flow rate, 50°C feed temperature and 1 MPa log mean transmembrane pressure. The RO system retained all dissolved flavor components and its ideal operating conditions were 40°C, 2.8 MPa log mean transmembrane pressure and a flow rate of 15 L/min.  相似文献   

18.
Clarification is the first step of inulin production from chicory juice, and membrane filtration as an alternative can greatly simplify this process, increase juice yield, improve product quality, and reduce the cost and waste volume. In this study, a rotating disk module (RDM) was used to investigate the clarification of chicory juice by four micro- and ultrafiltration membranes. Compared with dead end filtration, the RDM had a much higher permeate flux and product quality. High rotating speeds produced high permeate fluxes and reduced flux decline, because of the strong back transport of foulant from fouling layer to feed solution. At high rotating speeds of 1500–2000 rpm, the permeate flux increased with membrane pore size and transmembrane pressure (TMP), while at low rotating speeds (<1000 rpm), permeate flux was independent of membrane type and TMP due to a thick deposited fouling layer as a dominant filtration resistance, while carbohydrate transmission decreased at higher TMP because of denser cake layer as an additional selective membrane. The highest carbohydrate transmission (∼98%) and desirable permeate turbidity (2.4 NTU) was obtained at a TMP of 75 kPa and a rotating speed of 2000 rpm for FSM0.45PP membrane. With the RDM, the Volume Reduction Ratio (VRR) could reach 10 with a high permeate flux (106 L m−2 h−1) in the concentration test, and permeate was still rich in carbohydrate and well clarified. Chemical cleaning with 0.5% P3-ultrasil 10 detergent solution was able to recover 90% water flux of fouled membrane.  相似文献   

19.
Ultrafiltration (UF) is largely used in the dairy industry to generate milk and whey protein concentrate for standardization of milk or production of dairy ingredients. Recently, it was demonstrated that high hydrostatic pressure (HHP) extended the shelf life of milk and improved rennet coagulation and cheese yield. Pressurization also modified casein micelle size distribution and promoted aggregation of whey proteins. These changes are likely to affect UF performance. Consequently, this study determined the effect of skim milk pressurization (300 and 600 MPa, 5 min) on UF performance in terms of permeate flux decline and fouling. The effect of HHP on milk proteins was first studied and UF was performed in total recycle mode at different transmembrane pressures to determine optimal UF operational parameters and to evaluate the effect of pressurization on critical and limiting fluxes. Ultrafiltration was also performed in concentration mode at a transmembrane pressure of 345 kPa for 130 or 140 min to evaluate the decline of permeate flux and to determine fouling resistances. It was observed that average casein micelle size decreased by 32 and 38%, whereas β-lactoglobulin denaturation reached 30 and 70% at 300 and 600 MPa, respectively. These results were directly related to UF performance because initial permeate fluxes in total recycle mode decreased by 25% at 300 and 600 MPa compared with nonpressurized milk, critical flux, and limiting flux, which were lower during UF of milk treated with HHP. During UF in concentration mode, initial permeate fluxes were 30% lower at 300 and 600 MPa compared with the control, but the total flux decline was higher for nonpressurized milk (62%) compared with pressure-treated milk (30%). Fouling resistances were similar, whatever the treatment, except at 600 MPa where irreversible fouling was higher. Characterization of the fouling layer showed that caseins and β-lactoglobulin were mainly involved in membrane fouling after UF of pressure-treated milk. Our results demonstrate that HHP treatment of skim milk drastically decreased UF performance.  相似文献   

20.
Perfluorooctane sulfonate (PFOS) is an emergent contaminant of substantial environmental concerns. In this study, reverse osmosis (RO) and nanofiltration (NF) membranes were used to remove this toxic and persistent compound from PFOS-containing wastewater. Five RO membranes and three NF membranes were tested at a feed concentration of 10 ppm PFOS over 4 days, and the PFOS rejection and permeate flux performances were systematically investigated. PFOS rejection was well correlated to sodium chloride rejection. The rejection efficiencies for the RO membranes were > 99%, and those for the NF membranes ranged from 90-99%. Improvement in PFOS rejection, together with mild flux reduction (< 16%), was observed at longer filtration time. Such shifts in rejection and flux performance were probably due to the increased PFOS accumulation at longer duration, as shown by X-ray photoelectron spectroscopy and liquid chromatograph and tandem mass spectrometry results. A fraction of PFOS molecules might be entrapped in the polyamide layer of the composite membranes, which hindered the further passage of both water and other PFOS molecules. In a similar fashion, PFOS rejection and fouling were enhanced for greater initial flux and/or applied pressure, where PFOS accumulation was promoted probably due to increased hydrodynamic permeate drag. Flux reduction was also shown to correlate to membrane roughness, with the rougher membranes tend to experience more flux reduction than the smoother ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号