首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ultrahigh-speed 72-kb ECL-CMOS RAM macro for a 1-Mb SRAM with 0.65-ns address-access time, 0.80-ns write-pulse width, and 30.24-μm 2 memory cells has been developed using 0.3-μm BiCMOS technology. Two key techniques for achieving ultrahigh speed are an ECL decoder/driver circuit with a BiCMOS inverter and a write-pulse generator with a replica memory cell. These circuit techniques can reduce access time and write-pulse width of the 72-kb RAM macro to 71% and 58% of those of RAM macros with conventional circuits. In order to reduce crosstalk noise for CMOS memory-cell arrays driven at extremely high speeds, a twisted bit-line structure with a normally on MOS equalizer is proposed. These techniques are especially useful for realizing ultrahigh-speed, high-density SRAM's, which have been used as cache and control storages in mainframe computers  相似文献   

2.
An ultrahigh-speed 1-Mb emitter-coupled logic (ECL)-CMOS SRAM with 550-ps clock-access time, 900-MHz operating frequency, and 12-μm2 memory cells has been developed using 0.2-μm BiCMOS technology. Three key techniques for achieving the ultrahigh speed are a BiCMOS word decoder/driver with an nMOS level-shift circuit, a sense amplifier with a voltage-clamp circuit, and a BiCMOS write circuit with a variable-impedance bitline load. The proposed word decoder/driver and sense amplifier can reduce the delay times of the circuits to 54% and 53% of those of conventional circuits. The BiCMOS write circuit can reduce the power dissipation of the circuit by 74% without sacrificing writing speed. These techniques are especially useful for realizing ultrahigh-spaced high-density SRAMs, which will be used as cache and control memories in mainframe computers  相似文献   

3.
A 1.5-ns access time, 78-μm2 memory-cell size, 64-kb ECL-CMOS SRAM has been developed. This high-performance device is achieved by using a novel ECL-CMOS SRAM circuit technique: a combination of CMOS cell arrays and ECL word drivers and write circuits. These ECL word drivers and write circuits drive the CMOS cell arrays directly without any intermediate MOS level converter. In addition to the ultrahigh-speed access time and relatively small memory-cell size, a very short write-pulse width of 0.8 ns and sufficient soft-error immunity are obtained. This ECL-CMOS SRAM circuit technique is especially useful for realizing ultrahigh-speed high-density SRAMs, which have been used as cache and control storages of mainframe computers  相似文献   

4.
A soft-error-immune, 0.9-ns address access time, 2.0-ns read/write cycle time, 1.15-Mb emitter coupled logic (ECL)-CMOS SRAM with 30-ps 120 k ECL and CMOS logic gates has been developed using 0.3-μm BiCMOS technology. Four key developments ensuring good testability, reliability, and stability are on-chip test circuitry for precise measurement of access time and for multibit parallel testing, a memory-cell test technique for an ECL-CMOS SRAM, a highly stable current source with a simple design using a current mirror, and a soft-error-immune memory cell using a silicon-on-insulator (SOI) wafer. These techniques will be especially useful for making the ultrahigh-speed, high-density SRAM's used as cache and control storages in mainframe computers  相似文献   

5.
A 9-ns 16-Mb CMOS SRAM has been developed using a 0.35-μm CMOS process, The current-mode fully nonequalized data path has been realized in a CMOS SRAM for the first time by using a stabilized feedback current-sense amplifier (SFCA) that provides a small input resistance and an offset compensation effect. To reduce the test time, a bit-line wired-OR parallel test circuit has been implemented  相似文献   

6.
A novel architecture that enables fast write/read in poly-PMOS load or high-resistance polyload single-bit-line cells is developed. The architecture for write uses alternate twin word activation (ATWA) with bit-line pulsing. A dummy cell is used to obtain a reference voltage for reading. An excellent balance between a normal cell signal line and a dummy cell signal line is attained using balanced common data-line architecture. A newly developed self-bias-control (SBC) sense amplifier provides excellent stability and fast sensing performance for input voltages close to VCC at a low power supply of 2.5 V. The single-bit-line architecture is incorporated in a 16-Mb SRAM, which was fabricated using 0.25-μm CMOS technology. The proposed single-bit-line architecture reduces the cell area to 2.3-μm2 , which is two-thirds of a conventional two-bit-line cell with the same processes. The 16-Mb SRAM, a test chip for a 64-Mb SRAM, shows a 15-ns address access time and a 20-ns cycle time  相似文献   

7.
A 4-Mb SRAM with a 15-ns access time and a uniquely selectable (×4 or ×1) bit organization has been developed based on a 0.55-μm triple-polysilicon double-metal CMOS technology. An input-controlled PMOS-load (ICPL) sense amplifier, Y-controlled bit-line loads (YCLs), and a transfer word driver (TDW) are three key circuits which have been utilized in addition to the 0.55-μm CMOS technology to achieve the remarkable access time of 15 ns. Bit organization of either ×4 or ×1 can be selected purely electrically, and does not require any pin connection procedure  相似文献   

8.
A biasing scheme for sensing circuits, namely an automated bias control (ABC) circuit, for high-performance VLSIs is described. The ABC circuit can automatically gear the output level of sensing circuits to the input threshold voltage of the succeeding CMOS converters. The sensing performance can be accelerated with the ABC circuit either by reducing the excessive signal level margin between the sensing circuits and the CMOS converters or by reducing extra stages of signal amplification. Since feedback control of the ABC circuit ensures correct DC biasing even under large process deviations and circuit condition changes, a wider operation margin can also be obtained. Three successful applications of the ABC circuit are reported: a sense amplifier, an address transition detector (ATD), and an ECL-CMOS input buffer. A 64-kb BiCMOS SRAM employing the proposed sense amplifier and the ATD has been fabricated with a 0.8-μm 9-GHz BiCMOS technology. The SRAM has an address access time of 4.5 ns  相似文献   

9.
A 7-ns 140-mW 1-Mb CMOS SRAM was developed to provide fast access and low power dissipation by using high-speed circuits for a 3-V power supply: a current-sense amplifier and pre-output buffer. The current-sense amplifier shows three times the gain of a conventional voltage-sense amplifier and saves 60% of power dissipation while maintaining a very short sensing delay. The pre-output buffer reduces output delays by 0.5 ns to 0.75 ns. The 6.6-μm2 high-density memory cell uses a parallel transistor layout and phase-shifting photolithography. The critical charge that brings about soft error in a memory cell can be drastically increased by adjusting the resistances of poly-PMOS gate electrodes. This can be done without increasing process complexity or memory cell area. The 1-Mb SRAM was fabricated using 0.3-μm CMOS quadrupole-poly and double-metal technology. The chip measures 3.96 mm×7.4 mm (29 mm2)  相似文献   

10.
A 2 K×8-b, ECL 100 K compatible BiCMOS SRAM with 3.8-ns (-4.5 V, 60°) address access time is described. The precisely controlled bit-line voltage swing (60 mV), a current sensing method, and optimized ECL decoding circuits permit a reliable and fast readout operation. The SRAM features an on-chip write pulse generator, latches for input and output bits, and a full six-transistor CMOS cell array. Power dissipation is approximately 2 W, and the chip size is 3.9×5.9 mm2. The SRAM was based on 1.2-μm BiCMOS, using double-metal, triple-polysilicon, and self-aligned bipolar transistors  相似文献   

11.
A 0.3-μm 4-Mb BiCMOS SRAM with a 6-ns access time at a minimum supply voltage of 1.5 V has been developed. Circuit technologies contributing to the low-voltage, high-speed operations include: (1) boost-BiNMOS gates for address decoding circuits; (2) an optimized word-boost technique for a highly-resistive-load memory cell; (3) a stepped-down CML cascoded bipolar sense amplifier; (4) optimum boost-voltage detection circuits with dummies for boost-voltage generators  相似文献   

12.
Two high-speed sensing techniques suitable for ultrahigh-speed SRAMs are proposed. These techniques can reduce a 64-kb SRAM access time to 71~89% of that of conventional high-speed bipolar SRAMs. The techniques use a small CMOS memory cell instead of the bipolar memory cell that has often been used in conventional bipolar SRAMs for cache and control memories of mainframe computers. Therefore, the memory cell size can also be reduced to 26~43% of that of conventional cells. A 64-kb SRAM fabricated with one of the sensing techniques using 0.5-μm BiCMOS technology achieved a 1.5-ns access time with a 78-μm2 memory cell size. The techniques are especially useful in the development of both ultrahigh-speed and high-density SRAMs, which have been used as cache and control memories of mainframe computers  相似文献   

13.
An experimental 256-Mb dynamic random access memory using a NAND-structured cell (NAND DRAM) has been fabricated. The NAND-structured cell has four memory cells connected in series, which reduces the area of isolation between the adjacent cells and also reduces the bit-line contact area. The cell area per bit measures 0.962 μm2, using 0.4-μm CMOS technology, which is 63% in comparison with the conventional cell. In order to reduce the die size, time division multiplex sense-amplifier (TMS) architecture, in which a sense amplifier is shared by four bit lines, has been newly introduced. The chip area is 464 mm2, which is 68% compared with the DRAM using the current cell structure. The data can be accessed by a fast-block-access mode up to 512 bytes as well as a random access mode. Typical 112-ns access time of the first data in a block and 30-ns serial cycle time are achieved  相似文献   

14.
This paper describes power reduction circuit techniques in an ultra-high-speed emitter-coupled logic (ECL)-CMOS SRAM. Introduction of a 0.25-μm MOS transistor allows a Y decoder and a bit-line driver to be composed of CMOS circuits, resulting in a power reduction of 34%. Moreover, a variable-impedance load has been proposed to reduce cycle time. A 1-Mb ECL-CMOS SRAM was developed by using these circuit techniques and 0.2-μm BiCMOS technology. The fabricated SRAM has an ultrafast access time of 550 ps and a high operating frequency of 900 MHz with a power dissipation of 43 W  相似文献   

15.
A 4-Mb (512 K words by 8-b) CMOS static RAM (SRAM) with a PMOS thin-film transistor (TFT) has been developed. The RAM can obtain a much larger data-retention margin than a conventional high-resistive load-type well by using the PMOS TFT as a memory cell load. An internal voltage down-converter architecture with an external supply voltage-level sensor not only realizes a highly reliable 0.5-μm MOS transistor operation but also a sufficiently low standby-power dissipation characteristic for data battery-backup application. A self-aligned equalized level sensing scheme can minimize the sensing delay for a local sense amplifier to drive a large load capacitance of a global sensing bus line. The RAM is fabricated using a 0.5 μm, triple-poly, and double-aluminum with dual gate-oxide-thickness CMOS process technology. The RAM operates under a single 5-V supply voltage with 23-ns typical address access time and 20- and 70-mA operation current at 10 and 40 MHz, respectively  相似文献   

16.
A 4-Mb CMOS SRAM with 3.84 μm2 TFT load cells is fabricated using 0.25-μm CMOS technology and achieves an address access time of 6 ns at a supply voltage of 2.7 V. The use of a current sense amplifier that is insensitive to its offset voltage enables the fast access time. A boosted cell array architecture allows low voltage operation of fast SRAM's using TFT load cells  相似文献   

17.
A 1-Mb (256 K×4) CMOS SRAM with 6-ns access time is described. The SRAM, having a cell size of 3.8 μm×7.2 μm and a die size of 6.09 mm×12.94 mm, is fabricated by using 0.5-μm triple-polysilicon and double-metal process technology. The fast access time and low power dissipation of 52 mA at 100-MHz operation are achieved by using a new NMOS source-controlled latched sense amplifier and a data-output prereset circuit. In addition, an equalizing technique at the end of the write operation is used to avoid lengthening of access time in a read cycle following a write cycle  相似文献   

18.
A 4-Mb CMOS SRAM having 0.2-μA standby current at a supply voltage of 3 V has been developed. Current-mirror/PMOS cross-coupled cascade sense-amplifier circuits have achieved the fast address access time of 23 ns. A new noise-immune data-latch circuit has attained power-reduction characteristics at a low operating cycle time without access delay. A 0.5-μm CMOS, four-level poly, two-level metal technology with a polysilicon PMOS load memory cell, yielded a small cell area of 17 μm2 and the very small standby current. A quadruple-array, word-decoder architecture allowed a small chip area of 122 mm2  相似文献   

19.
A 1-Mb (256 K×4 b) CMOS static random-access memory with a high-resistivity load cell was developed with 0.7-μm CMOS process technology. This SRAM achieved a high-speed access of 18 ns. The SRAM uses a three-phase back-bias generator, a bus level-equalizing circuit and a four-stage sense amplifier. A small 4.8×8.5-μm2 cell was realized by the use of a triple-polysilicon structure. The grounded second-polysilicon layer increases cell capacitance and suppresses α-particle-induced soft errors. The chip size measures 7.5×12 mm2  相似文献   

20.
A 20 ns 4-Mb CMOS SRAM operating at a single supply voltage of 3.3 V is described. The fast access time has been achieved by a newly proposed word-decoding architecture and a high-speed sense amplifier combined with the address transition detection (ATD) technique. The RAM has the fast address mode, which achieves quicker than 10-ns access, and the 16-b parallel test mode for the reduction of test time. A 0.6-μm process technology featuring quadruple-polysilicon and double-metal wiring is adopted to integrate more than 16 million transistors in a 8.35-mm×18.0-mm die  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号