首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Translocations and deletions of the short arm of chromosome 12 [t(12p) and del(12p)] are common recurring abnormalities in a broad spectrum of hematologic malignant diseases. We studied 20 patients and one cell line whose cells contained 12p13 translocations and/or 12p deletions using fluorescence in situ hybridization (FISH) with phage, plasmid, and cosmid probes that we previously mapped and ordered on 12p12-13. FISH analysis showed that the 12p13 translocation breakpoints were clustered between two cosmids, D12S133 and D12S142, in 11 of 12 patients and in one cell line. FISH analysis of 11 patients with deletions demonstrated that the deletions were interstitial rather than terminal and that the distal part of 12p12, including the GDI-D4 gene and D12S54 marker, was deleted in all 11 patients. Moreover, FISH analysis showed that cells from 3 of these patients contained both a del(12p) and a 12p13 translocation and that the affected regions of these rearrangements appeared to overlap. We identified three yeast artificial chromosome (YAC) clones that span all the 12p13 translocation breakpoints mapped between D12S133 and D12S142. They have inserts of human DNA between 1.39 and 1.67 Mb. Because the region between D12S133 and D12S142 also represents the telomeric border of the smallest commonly deleted region of 12p, we also studied patients with a del(12p) using these YACs. The smallest YAC, 964c10, was deleted in 8 of 9 patients studied. In the other patient, the YAC labeled the del(12p) chromosome more weakly than the normal chromosome 12, suggesting that a part of the YAC was deleted. Thus, most 12p13 translocation breakpoints were clustered within the sequences contained in the 1.39 Mb YAC and this YAC appears to include the telomeric border of the smallest commonly deleted region. Whether the same gene is involved in both the translocations and deletions is presently unknown.  相似文献   

2.
It is a sad fact that even with liberal doses of curiosity, an interesting issue and enough time and money, many good research ideas fail to reach the stage of a completed project. Not all of us have the time to devote to the research methods courses and workshops that have sprung up around the country in the past few years. The Research Committee of the RACGP plans to help. This is the first article in a series that will provide the new GP researcher with guidelines on asking the right question, choosing the best method, and getting results published. The series aims to make research in general practice more accessible by demystifying the jargon, clarifying the statistics and explaining the rules of publication.  相似文献   

3.
4.
Cytogenetic analyses have revealed structural rearrangements of chromosome 1 in a large fraction of head and neck carcinomas (HNCA). These aberrations frequently affect chromosomal band 1p13 and the centromeric region, the latter often in the form of isochromosome i(1q) and whole-arm translocations. To delineate the critical region involved in rearrangements of proximal 1p, we have undertaken a more precise breakpoint mapping in 13 HNCAs, using metaphase fluorescence in situ hybridization with 11 yeast artificial chromosome (YAC) clones spanning 1p. All of the tumors had chromosome 1 changes at G-banding analyses. Fluorescence in situ hybridization showed that in almost all of the cases, at least one copy of chromosome 1 was affected by centromeric rearrangement. By the use of YAC clones mapped to juxtacentromeric regions and a centromere-specific alpha-satellite probe, we detected variable breakpoints in the whole-arm translocations. At the cytogenetic level, 1p13 rearrangements were frequent. However, molecular breakpoints within this band varied among the HNCAs tested. The lack of consistently rearranged chromosome segments indicates that the pathogenetically important consequence of 1p rearrangements in HNCAs is loss and/or gain of genes outside the breakpoint regions. In an assessment of the genomic imbalances, partial or complete overrepresentation of 1q was seen in eight cases. Loss of 1p material was also identified in eight cases; and in four of them, the deleted segments were too small to be discovered by G-banding analysis. The minimal overlapping deleted region was in the interval between YAC 959C4 (band p11-p12) and the centromere (p10). Our findings indicate that a target region potentially harboring tumor suppressor gene(s) crucial for HNCA is located within chromosomal bands 1p11-p13.  相似文献   

5.
6.
Epithelial ovarian tumors frequently display deletions on the short arm of chromosome 3 suggesting the existence of tumor suppressor genes within the deleted regions. We have recently established a primary tissue culture system as a model to investigate the genetic events associated with ovarian cancer. The frequencies of loss of heterozygosity (LOH) at 16 loci representative of chromosome 3p in 33 tumor biopsies and 47 ovarian primary cultures derived from unselected ovarian cancers were examined. This repertoire also included benign and borderline tumors as well as malignant ovarian ascites. LOH was observed in 25 (31%) samples for at least one marker: 21 of 58 malignant, two of 12 borderline and two of 10 benign specimens. Chromosome 3p loss was not restricted to ovarian tumors of high grade and stage. LOH was observed in both cultured and non cultured tumors and ascites. A spontaneously immortalized cell line derived from a malignant ovarian ascites, OV-90, displayed LOH of the majority of markers suggesting loss of one homolog of chromosome 3p. The pattern of deletion displayed by these 25 samples enabled the determination of at least two distinct regions of overlapping deletions on chromosome 3p extending from D3S1270 to D3S1597 and from D3S1293 to D3S1283. In addition, a region proximal to D3S1300 was deleted in a subset of samples. Although loss of loci overlapping these three regions (Regions I, II and III) were observed in malignant and benign tumors, in borderline tumors loss was observed of markers representative of Region III only. While RARbeta is presently included in Region II, the minimal regions of deletion exclude VHL, TGFBR2, PTPase(gamma) and FHIT as candidate tumor suppressors in ovarian tumorigenesis.  相似文献   

7.
Loss of heterozygosity (LOH) and deletion of chromosome 1p are very often found in sporadic neuroblastoma. Nevertheless, very few data are available concerning 1p LOH in familial neuroblastoma. Families with recurrent neuroblastoma are rare and analysis of chromosome 1p in these families might give useful information for identifying the putative neuroblastoma suppressor gene. We used combined cytogenetic and molecular techniques to study 1p LOH in two neuroblastoma families. Family M has 2 out of 3 children with neuroblastoma and family C has 2 children, 1 of whom has neuroblastoma and type 1 neurofibromatosis (NF1). All patients of both families showed tumour cells with chromosome 1p deletion (1pdel), but only the patient from family C also had MYCN gene amplification. In all cases the deleted chromosome 1 was of maternal origin.  相似文献   

8.
9.
Allelic loss of chromosome 9p21 is common in small cell lung cancer (SCLC), but inactivation of the tumor suppressor gene CDKN2a is rare, implying the existence of another target gene at 9p21. A recent deletion mapping study of chromosome 9p has also identified a site of deletion in non-small cell lung cancer (NSCLC) centered around D9S126. The Hel-N1 (human elav-like neuronal protein 1) gene encodes a neural-specific RNA binding protein that is expressed in SCLC. We have mapped this potentially important gene in lung tumorigenesis to within 100 kb of the D9S126 marker at chromosome band 9p21 by using homozygously deleted tumor cell lines and fluorescence in situ hybridization to normal metaphase spreads. Hel-N1 is, therefore, a candidate target suppressor gene in both SCLC and NSCLC. We have determined the genomic organization and intron/exon boundaries of Hel-N1 and have screened the entire coding region for mutations by sequencing 14 primary SCLCs and cell lines and 21 primary NSCLCs preselected for localized 9p21 deletion or monosomy of chromosome 9. A homozygous deletion including Hel-N1 and CDKN2a was found in a SCLC cell line, and a single-base polymorphism in exon 2 of Hel-N1 was observed in eight tumors. No somatic mutations of Hel-N1 were found in this panel of lung tumors. Hel-N1 does not appear to be a primary inactivation target of 9p21 deletion in lung cancer.  相似文献   

10.
Thirty-two hematologic malignancies--nine with cytogenetically identified 12p abnormalities and 23 with whole or partial losses of chromosome 12--were selected for fluorescence in situ hybridization (FISH) investigations of 12p. These analyses revealed structural 12p changes, such as translocations, deletions, insertions, inversions and amplification, in 20 cases. ETV6 rearrangements were detected in three acute leukemias. One acute undifferentiated leukemia had t(4;12)(q12;p13) as the sole anomaly. The second case, an acute myeloid leukemia (AML), displayed complex abnormalities involving, among others, chromosomes 9 and 12. The third case, also an AML, had an insertion of the distal part of ETV6 into chromosome arm 11q and into multiple ring chromosomes, which also contained chromosome 11 material, resulting in an amplification of a possible fusion gene. The fusion partners in these cases remain to be identified. Thirty-one additional breakpoints on 12p could be characterized in detail. The majority of these breaks were shown to result in interchromosomal rearrangements, possibly indicating the location of hitherto unrecognized genes of importance in the pathogenesis of hematologic malignancies. The FISH analyses disclosed terminal or interstitial 12p deletions in 18 cases. Seven myeloid malignancies showed deletions restricted to a region, including ETV6 and CDKN1B, which has been reported to be frequently lost in leukemias. In four cases, the deletions involved both these genes, whereas two AML displayed loss of CDKN1B but not ETV6, supporting previously reported findings indicating a region of deletion not including this gene. However, one myelodysplastic syndrome lacked one copy of ETV6 but not CDKN1B. Hence, we suggest a minimal region of deletion on 12p located between the ETV6 and CDKN1B genes.  相似文献   

11.
12.
13.
14.
The bark of the yohimbine tree has long been appreciated as an aphrodisiac. Recent studies have shown that yohimbine is effective in the symptomatic treatment of erectile dysfunction. It is superior to placebo and has fewer side effects compared with the invasive treatment of erectile dysfunction. The evidence for effectiveness seems less compelling for other oral drugs used in this condition. It can be concluded that yohimbine is an attractive option in the symptomatic treatment of erectile dysfunction.  相似文献   

15.
16.
17.
18.
19.
A case of synchronous squamous cell carcinomas in the soft palate, larynx and esophagus is reported, along with findings of molecular-pathological analysis. A biopsy sample from the aryngeal carcinoma revealed well differentiated squamous cell carcinoma harboring two point mutations at codons 144 and 148 of the p53 gene but not at codon 299, and more than 50% of the cancer cells showed accumulation of p53 protein immunohistochemically. The esophageal tumor, which was moderately differentiated squamous cell carcinoma, showed immunoreactivity for p53 within the nuclei of 25-50% of cancer cells with a missense mutation at codon 299 but not at codon 144 or 148. This cancer also showed immunoreactivity for transforming growth factor alpha. On the other hand, the poorly differentiated squamous cell carcinoma in the soft palate showed negative immunoreactivity for p53 and no point mutation in exons 5 to 8 of the gene. These results suggest that the three synchronous squamous cell carcinomas arose as independent events.  相似文献   

20.
We describe a gene encoding p73, a protein that shares considerable homology with the tumor suppressor p53. p73 maps to 1p36, a region frequently deleted in neuroblastoma and other tumors and thought to contain multiple tumor suppressor genes. Our analysis of neuroblastoma cell lines with 1p and p73 loss of heterozygosity failed to detect coding sequence mutations in remaining p73 alleles. However, the demonstration that p73 is monoallelically expressed supports the notion that it is a candidate gene in neuroblastoma. p73 also has the potential to activate p53 target genes and to interact with p53. We propose that the disregulation of p73 contributes to tumorigenesis and that p53-related proteins operate in a network of developmental and cell cycle controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号