首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We discuss the design of one-port surface acoustic wave (SAW) resonators using substrates with a partial or total degree of directivity, that is, the natural single-phase unidirectional transducer (N-SPUDT) effect. A general design method gives a resonance when all three frequencies (the required resonance frequency and the Bragg frequencies) are different. A second method has been derived from the resonance condition for a symmetrical substrate. Two further methods incorporate lamda/4 gaps. The capacitance ratio is presented as a function of the phase of the electrode reflection coefficient. The simulations use data for the N-SPUDT orientation of langasite. The reflection coefficient for Al electrodes has been calculated from finite element modeling (FEM) analysis. The approximate perturbation theory is found to agree well for small film thickness (h/lamda < 2%). The phase of the reflection coefficient is typically 150 degrees, not quite the ideal value of 180 degrees. Measurements on resonators using Al and Cu films are presented.  相似文献   

3.
The authors describe prototype low-noise SAW (surface acoustic wave) resonator oscillators which have demonstrated state-of-the-art phase-noise performance not only at their fundamental operating frequencies in the 400- to 600-MHz range but also after 16x frequency multiplication to X-band as well. SAW resonator designs with overmoded cavities, very wide apertures, and dual apertures, as well as modified fabrication techniques, have been used to realize an overall reduction in an oscillator's phase-noise spectrum, i.e. white phiM, flicker FM, and random-walk FM. The S resonators can typically handle incident RF power in excess of +20 dBm, a key requirement to achieving an extremely low oscillator-phase-noise floor. A novel burn-in procedure at relatively high incident-RF-power levels (>27 dBm) was used to reduce both the flicker FM and random-walk FM phase-noise levels. Using these various techniques, a 5- to 15-dB improvement in the overall phase-noise spectrum for several prototype oscillators was demonstrated.  相似文献   

4.
Many successful dot array SAW devices including RAC's, resonators and band-pass filters have been reported, but the wide range of dot parameters, including dot dimensions, spacing and pattern, which allows flexibility in design, has not previously been utilized. This paper reports on the design of an RAC (reflecting array compressor) with a TB product of 1000, the emphasis being to exploit some of this flexibility. The design has been implemented using YZ LiNbO3 with thin metal dots as the reflectors. It makes use of the wide range of reflectivities available from electrical effects in a novel weighting scheme based on dot size. The dots have been designed so that the sensitivity to over-etch is minimal. The array, which is sparse and near-periodic, has been designed to reduce unwanted reflections. This is least successful in the case of SAW to bulk wave reflection and the consequent loss due to this cause is accounted for in the design. The design approach is quite general and should be of use for other devices  相似文献   

5.
Modeling of waveguide-coupled SAW resonators   总被引:1,自引:0,他引:1  
Coupling of modes in space (COMS) is applied to the analysis of waveguide coupled surface acoustic wave (SAW) resonators. Standard one-dimensional COMS equations are extended to model distributed coupling between adjacent SAW reflector arrays. Computed frequency responses are presented for two-pole and four-pole waveguide coupled resonators  相似文献   

6.
High Q compact printed helical resonators which operate from around 1.8 to 2 GHz are described. These consist of a multilayer printed circuit board (PCB) incorporating a printed helical transmission line. Loss in the via hole is reduced by ensuring that the standing wave current at this point is near zero. This ensures a significant increase in Q. Further increased energy storage per unit volume is achieved due to the 3-D helical nature of the resonator. Unloaded Qs of 235 and 195 have been obtained on low loss PCBs with dielectric constants of 2.2 and 10.5, respectively. Two applications for these resonators are described in this paper. The first is the design of a compact low noise oscillator where the ratio of QL/Q0, and hence insertion loss, is adjusted for low noise. The 2-GHz oscillator demonstrates a phase noise of -120 dBc/Hz at 10 kHz which is predicted exactly by the theory. The second is a three-section filter designed to offer the response required by the front end filter of a modern GSM mobile telephone. In the filter design three helical resonators are coupled together to produce a completely printed triplate bandpass filter.  相似文献   

7.
This paper introduces a method of wireless read out of high Q surface acoustic wave (SAW) resonator sensors. The resonator is excited by a short RF pulse and decays after switching off the interrogating signal. In the measurement system, a gated phase locked loop (GPLL) locks to the resonance frequency of the SAW resonator within a few bursts. Then the frequency of the GPLL oscillator is synchronized to the resonance of the sensor and can be measured easily. The concept is intended to yield an alternative to interrogators with expensive signal processing. Considering the inherent limitations, the proposed system presents a low cost solution for temperature, force, torque, etc. measurements. We describe the sensors, the signals, and the implemented system. Results of temperature measurements using quartz resonators are presented, and merits and disadvantages are discussed.  相似文献   

8.
The S(11) and equivalent S(21) frequency responses of a one-port surface acoustic wave (SAW) resonator with transverse modes derived from one-dimensional coupling-of-modes and transmission-matrix analysis. The two-dimensional nature of the problem is approximated by a summation of one-dimensional mode responses for each transverse mode. Comparison between theory and experimental data for a commercial 280-MHz one-port SAW resonator shows good agreement for the placement of transverse modes.  相似文献   

9.
Linear equations derived from the scattering matrix approach to the two-port resonator were solved, and analytical expressions for the normalized SAW amplitudes were obtained. Asynchronous and synchronous resonators were analyzed numerically. It was shown that the output of the two-port resonator is a sum of two signals. In the case of the asynchronous resonator, these signals are in phase at a resonance frequency; for the synchronous resonator, they are in phase quadrature, which causes the higher insertion loss of the synchronous resonator  相似文献   

10.
The scattering matrix method was used to derive an expression for the reflection coefficient of a one-port SAW resonator. This expression was applied to calculations of an input admittance of a synchronous resonator on ST-cut quartz. Very good agreement was obtained between calculated and measured parameters of the resonator.  相似文献   

11.
The role that SAW (surface-acoustic-wave) resonators have come to play in high-performance test instrumentation is reviewed. The contributions made by SAW resonators in a number of Hewlett-Packard (HP) instrument applications are detailed. SAW-controlled oscillators are now the preferred design for precision frequency-control applications in the frequency range 200 MHz-1 GHz. The challenges in device design, fabrication, packaging and testing for these demanding applications are discussed.  相似文献   

12.
In contrast to conventional transversely coupled resonator filters, waveguide coupling of two one-port resonators with different resonance frequencies is described. The different resonance frequencies are implemented by different central finger gaps or gratings differing by a scaling factor. Consequently, the equivalent fingers and reflecting strips of different resonators are shifted with respect to each other, and the waveguide modes are, therefore, no longer independent of each other. This effect is called mutual coupling of waveguide modes and requires a new type of modeling. The main characteristics of the new modeling method are described. The advantage of the design principle consists of a wider bandwidth without changing the waveguide parameters and different input and output impedance.  相似文献   

13.
A method for precision frequency trimming of surface acoustic wave (SAW) and surface transverse wave (STW) based resonant devices using a Xe(+) heavy ion bombardment technique is described. The devices are downtrimmed in frequency in an in-situ monitoring process by means of a Kaufmann type ion source that allows first a rough and then a fine frequency trimming with an accuracy of 1 ppm in a single continuous in-situ monitoring process. An improvement of the device insertion loss and unloaded Q as a result of the trimming process is achieved. Single mode 776 MHz STW resonators can be downtrimmed by more than 5000 ppm without deteriorating their parameters while SAW resonators allow a much lower frequency downshift. The method is simple and can cost effectively be applied to SAW and STW device fabrication.  相似文献   

14.
Small size ultrahigh Q polymer microrings working at near visible wavelength have been experimentally demonstrated as ultralow noise ultrasound detectors with wide directivity at high frequencies (>20 MHz). By combining a resist reflow and a low bias continuous etching and passivation process in mold fabrication, imprinted polymer microrings with drastically improved sidewall smoothness were obtained. An ultralow noise-equivalent pressure of 21.4 Pa over 1-75 MHz range has been achieved using a fabricated detector of 60 μm diameter. The device's wide acceptance angle with high sensitivity considerably benefits ultrasound-related imaging.  相似文献   

15.
Surface acoustic wave (SAW) resonators on lithium tantalate (LiTaO3) and lithium niobate (LiNbO3) are investigated. The amplitude of the acoustic fields in the resonators are measured using a scanning laser interferometer. The amplitude profiles of the surface vibrations reveal the presence of distinct acoustic beams radiated from the transducer region of the SAW resonators and propagating with low attenuation. We suggest that this radiation is generated by the charges accumulating at the tips of the finger electrodes. The periodic system of sources, namely oscillating charges at the fingertips, generates Rayleigh-wave beams in the perpendicular and oblique directions. Green's function theory is used to calculate the coupling strength and slowness of the Rayleigh waves on 42 degrees Y-cut LiTaO3 and Y-cut LiNbO3 substrates as a function of the propagation direction. Furthermore, the propagation angles of the Rayleigh-wave beams as a function of frequency are calculated. The computed angles are compared with the measured ones for both the LiTaO3 and LiNbO3 substrates.  相似文献   

16.
Discusses acoustic losses in synchronous leaky surface acoustic wave (LSAW) resonators on rotated Y-cut lithium tantalate (LiTaO3 ) substrates. Laser probe measurements and theoretical models are employed to identify and characterize the radiation of leaky waves into the busbars of the resonator and the excitation of bulk acoustic waves. Escaping LSAWs lead to a significant increase in the conductance, typically occurring in the vicinity of the resonance and in the stopband, but they do not explain the experimentally observed deterioration of the electrical response at the antiresonance. At frequencies above the stopband, the generation of fast shear bulk acoustic waves is the dominant loss mechanism  相似文献   

17.
Surface acoustic wave (SAW) resonators on ST cut quartz, with synchronous placement of the interdigital transducers (IDT), were designed, fabricated, and measured. The basic structure of the resonators was a two-port one. The one-port resonators were obtained by parallel connection of the two IDT or by short circuiting one of them. The IDT were apodized to eliminate coupling to spurious modes. The transfer function of the two-port resonators was calculated by using the scattering matrix method. Several models of these resonators were investigated in the frequency range from about 300 to 715 MHz. By matching the theoretical and experimental transfer functions, the loss coefficient as a function of frequency and the SAW velocity in the reflector area as a function of aluminium layer thickness were determined. The responses of the resonators were free of any spurious modes.  相似文献   

18.
This paper discusses side acoustic radiation in leaky surface acoustic wave (LSAW) resonators on rotated Y-cut lithium tantalite substrates. The mechanism behind side radiation, which causes a large insertion loss, is analyzed by using the scalar potential theory. This analysis reveals that side radiation occurs when the guiding condition is not satisfied, and the LSAW most strongly radiates at the frequency in which the LSAW velocities in the grating and busbar regions approximately correspond to each other. Based on these results, we propose a "narrow finger structure," which satisfies the guiding condition and drastically suppresses the side radiation. Experiments show that the resonance Q of the proposed structure drastically improves to over 1000 by suppressing the side radiation, which is three times higher than for a conventional structure. Applying the proposed resonators to the ladder-type SAW filters, ultra-low-loss and steep cut-off characteristics are achieved in the range of 800 MHz and 1.9 GHz.  相似文献   

19.
This paper describes a design procedure for surface acoustic wave (SAW) filters using slanted finger interdigital transducers (SFIT) that are suitable for mid-band or wideband applications. The SFITs cannot represent the impulse response directly, in contrast to apodized IDTs. A design method for SFITs based on a building-block approach in the frequency domain is described. An automatic computer-aided design tool for SFIT filters has been achieved. The SFIT filters can be designed using a withdrawal weighting for stop-band responses, an aperture weighting for pass-band amplitude responses, and a distance weighting for pass-band phase responses. In addition, a SFIT pattern for photo mask can be automatically designed using this tool. Using this tool, an SFIT filter with a relative bandwidth of 15% was designed on an x-cut 112y-direction LiTaO(3) substrate.  相似文献   

20.
Miniaturized SAW filters using a flip-chip technique   总被引:1,自引:0,他引:1  
This paper describes a miniature surface acoustic wave (SAW) filter, 3.2×2.5×0.9 mm3, which is applicable for radio frequency (RF) stage filters in mobile phones. The SAW filter is reduced in size by using a flip-chip assembly technique. The technique uses gold bumps on the SAW chip and gold-gold thermosonic face-down bonding. The gold bumps are formed onto the wafer by a conventional wire bonding machine using gold wire. The thermosonic face-down bonding enables the connection of gold bumps on the SAW chip, with gold metallized pads, on a ceramic package at a temperature below 200°C. This bonding ensures that the SAW chip is fixed mechanically, and connected electrically, with the package. Frequency responses of a 950-MHz flip-chip SAW filter are compared with responses of a SAW filter with a conventional package. The results of reliability tests for flip-chip SAW filters are shown  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号