共查询到19条相似文献,搜索用时 31 毫秒
1.
2.
3.
《应用化工》2017,(12):2435-2440
简述了悬浮床重油加氢裂化工艺、工业化过程面临的技术问题以及催化剂的研究进展。目前国际上成熟的前沿悬浮床加氢裂化技术有EST工艺、HDHPLUS工艺、Uniflex工艺等,这些工艺多采用均相分散型催化剂,有效地减少重馏分的缩合生焦,具有催化活性高,产品汽柴比高等特点,已实现工业装置建设和生产,成为炼厂解决重质油深度加工问题的关键技术。分析表明,未来的主要工作任务是降低底油产量及提高轻质油品的收率的同时减少结焦。因此,研发高分散、高活性的催化剂、设计具有高效传质传热效率的新型反应器、开发高效工业组合工艺是今后悬浮床加氢工艺研究的重要内容。 相似文献
4.
《应用化工》2022,(12):2435-2440
简述了悬浮床重油加氢裂化工艺、工业化过程面临的技术问题以及催化剂的研究进展。目前国际上成熟的前沿悬浮床加氢裂化技术有EST工艺、HDHPLUS工艺、Uniflex工艺等,这些工艺多采用均相分散型催化剂,有效地减少重馏分的缩合生焦,具有催化活性高,产品汽柴比高等特点,已实现工业装置建设和生产,成为炼厂解决重质油深度加工问题的关键技术。分析表明,未来的主要工作任务是降低底油产量及提高轻质油品的收率的同时减少结焦。因此,研发高分散、高活性的催化剂、设计具有高效传质传热效率的新型反应器、开发高效工业组合工艺是今后悬浮床加氢工艺研究的重要内容。 相似文献
5.
渣油悬浮床加氢工艺研究 总被引:5,自引:0,他引:5
介绍了渣油悬浮床加氢技术领域的现状及抚顺石油化工研究院渣油悬浮床加氢技术特点。在不同反应器规模的连续式悬浮床加氢装置上的试验结果表明,研制的水溶性催化剂具有较强的原料适应性,在中等压力、空速约1.0 h-1、催化剂加入量低于300 μg/g和一次通过的条件下处理常压渣油,小于500℃馏分油收率为70%~90%;处理减压渣油,小于500 ℃馏分油收率可达60%~80%,而过程甲苯不溶物质量分数低于10%。将悬浮床加氢技术与其他重油加工过程组合,可增加悬浮床加氢技术的灵活性,并有利于提高过程的总液体收率和经济性。 相似文献
6.
7.
重油悬浮床加氢技术新进展 总被引:2,自引:0,他引:2
介绍了意大利埃尼公司EST悬浮床加氢技术和石油大学新型悬浮床加氢技术,并分别与其它重油加工手段在技术经济上作了对比,另外对上述两种悬浮床加氢技术进行了比较,对悬浮床加氢技术的研发重点和技术的发展趋势作了分析和预测。 相似文献
8.
悬浮床加氢技术也称浆液床加氢技术,最早始于30年代的煤和煤焦油加氢。50年代初,德国将硫酸亚铁担载在褐煤或焦粉上用于煤焦油加氢,但其加氢活性很低。联合裂化过程(VCC),是德国VEBA公司在煤和煤焦油加氢技术的基础上开发的,是一种高转化率的渣油热氢解过程。悬浮床渣油加氢使 相似文献
9.
根据渣油悬浮床加氢技术所用催化剂类型,系统地总结和分析了国外已有和正在开发的采用固体粉末、油溶性、水溶性催化剂的三条技术路线的特点,发展史和现状。简要地介绍了抚顺石油化工研究院开发的水溶性催化剂的悬浮床加氢技术。 相似文献
10.
固定床渣油加氢改质技术是比较成熟的重质油加工手段,而悬浮床渣油加氢技术是较新的重油轻质化方案.以悬浮床加氢技术为主,详细地比较了两种技术在催化剂组成和性质,反应机理,工艺过程方面的区别,指出两种工艺联合使用可以充分发挥各自的优势,扬长避短,创造更大的经济效益. 相似文献
11.
论述了苯胺加氢制环己胺的反应机理,对于液相加氢和气相加氢催化剂作了详细的介绍,指出非贵金属的气相加氢催化剂是今后的研究重点。 相似文献
12.
13.
概述了以合成气为原料合成二甲醚工艺中浆态床反应器使用的双功能催化剂的研究现状和最新进展。介绍了传统双功能催化剂以及对传统催化剂的改性研究,重点介绍了基于使催化材料的制备环境与其使用环境完全一致,以解决催化剂失活问题的完全液相法的研究进展,该方法制备的催化剂具有良好的稳定性和催化性能,并具有广泛的应用前景。 相似文献
14.
每年将数亿吨重油加工成轻质馏分或化工原料关系到我国国家能源安全和能源资源的高效利用。然而传统的重油浆态床加氢反应器(TSR)一般都是在高压下运行,这会产生一系列负面影响。本文发展了一种新的加氢方法——微界面强化浆态床加氢反应器(MISR),构建了MISR中气泡Sauter平均直径d32和气-液相界面积a以及能量耗散率ε数学模型,并建立了冷模模拟实验体系d32和a的测试系统。理论计算结果表明,MISR中氢气传质速率远大于TSRs,这为MISR中重油高效、低压加氢提供了理论依据。实验研究表明,在实际操作条件下,当气液比(氢/油)从10变化到150时,MISR中d32在220~420μm范围内。与高压操作下的TSRs相比,MISR内气液界面面积和氢传质速率分别提高了20~100倍和20~50倍。分析显示,d32和a的理论计算结果与实测值的误差均在15%以内。 相似文献
15.
16.
17.
18.