共查询到20条相似文献,搜索用时 62 毫秒
1.
《应用化工》2022,(3):593-598
采用硼酸保护法,以中间体硼酸双甘油酯和油酸为反应物,在负载型固体酸催化剂,氮气保护,二甲苯为携水剂的条件下合成了单油酸甘油酯。考察了物质的量比、反应温度、反应时间和催化剂用量对反应产率的影响,并评价了其抗磨性能。结果表明,合成单油酸甘油酯的最佳工艺条件为:中间体硼酸双甘油酯与油酸物质的量比为1∶1.5,反应温度为170℃,反应时间为4 h,催化剂用量为油酸质量的3%。在该条件下,酯化率可以达到86%以上。采用高频往复试验机测试了单油酸甘油酯的抗磨性能,在加入量为190μg/g时,可使钢球的磨斑直径从610.90μm降低为395.20μm。 相似文献
2.
《化学世界》2017,(11)
以对甲苯磺酸为催化剂,甲苯为携水剂,油酸和甘油为原料合成了二油酸甘油酯与三油酸甘油酯的混合物。实验考察了物质的量比、反应时间、反应温度和对甲苯磺酸(催化剂)用量对酯化率的影响,并通过红外光谱对产品结构进行表征。结果表明,适宜的反应条件是:n(丙三醇)∶n(油酸)=0.7∶1;反应温度155~160℃;反应时间9h;催化剂用量5%;甲苯(携水剂)用量20%,在此条件下油酸的酯化率达99.4%,产物的酸值(mg·KOH/g)2。用HFRR法评定产物抗磨性能,结果表明:在低硫柴油中添加300mg/kg时,磨斑直径从830μm降至386.6μm,且不影响低硫柴油的其他理化性质。 相似文献
3.
详细论述了催化酯化合成三油酸甘油酯的方法,此合成分两步完成,避免了酯化反应的可逆性,高质量的产品符合医药用标准。 相似文献
4.
5.
油酸甘油酯是由甘油与油酸通过高温酯化而成。反应过程中,油酸会发生顺反异构化,使成品中的反式油酸含量超标,严重影响产品应用性能。通过单因素实验研究反应温度、反应时间、体系酸碱性对反式油酸含量的影响。结果表明,通过对反应过程中关键参数的控制,可以减少产品中反式油酸的含量。 相似文献
6.
研究了直接酯化法合成单月桂酸甘油酯(GML)工艺,产物GPC测定纯度45%。考察了GML不同含量和复配剂型的生物活性,初步认为副产二酯、三酯不影响其防腐性能,而GML与山梨酸、磷酸盐等复配有明显的增效作用。 相似文献
7.
脂肪酶催化合成单脂肪酸甘油酯 总被引:2,自引:0,他引:2
对脂肪本矣合成单甘酯中的催化作用作了综述。介绍了有机溶剂、反相胶束和无溶剂固相等反应体系中用不同脂肪酶对油脂选择水解、脂肪酸的酯化或脂肪酸酯与甘油的转酯反应、油脂甘油解以及甘油基团保护反应等合成方法。2 相似文献
8.
9.
10.
11.
The continuous sulfur reduction in diesel fuel has resulted in poor fuel lubricity and engine pump failure, a fact that led to the development of a number of methods that measure the actual fuel lubricity level. However, lubricity measurement is costly and time consuming, and a number of predictive models have been developed in the past, based mainly on various fuel properties. In the present paper, a black box modeling approach is proposed, where the lubricity is approximated by a radial basis function (RBF) neural network that uses other fuel properties as inputs. The HFRR apparatus was used for lubricity measurements. In the present model, the variables used included the diesel fuel conductivity, density, kinematic viscosity at 40 °C, sulfur content and 90% distillation point, which produced the smallest error in the validation data. 相似文献
12.
13.
Oxygenated additives have been the subject of much research because they notably improve the fuel characteristics and combustion performance. Moreover, there is a tendency to use oxygenated additives derived from biomass. In the case of glycerol, previous studies have shown that oxygenated compounds are generated by dehydration, decomposition and isomerization reactions from glycerol and its intermediaries, where the selected route of these reactions depends on the type of catalyst used.In this work, the liquid phase obtained during the catalytic glycerol decomposition at 400 °C using a basic catalyst was characterized by GC and GC–MS. This phase is constituted mostly by highly oxygenated compounds of known energetic use. After a drying process, the effect of the glycerol condensates as an additive in diesel–biodiesel (B5) engines at the 0.2% (v/v) concentration was evaluated. The physical properties of the fuel and the mechanic, thermodynamic, and environmental performance of the stationary diesel engine were analyzed in the current study. The presence of the additive decreased the pour point of diesel and the amount of particulate matter generated during combustion. 相似文献
14.
《Fuel》2005,84(12-13):1601-1606
Unrefined biodiesels containing small quantities of monoglycerides, diglycerides, and triglycerides, and refined biodiesels not containing these glycerides were added to diesel fuel and the resulting lubricity was measured using the High Frequency Reciprocating Rig (HFRR) method. The unrefined biodiesels showed higher lubricity properties than refined biodiesels. The chemical factors influencing the lubricity properties of biodiesels were investigated. Methyl esters and monoglycerides are the main compositions that determine the lubricity of biodiesels that meet international standards. Free fatty acids and diglycerides can also affect the lubricity of biodiesel, but not so much as monoglycerides. Triglycerides almost have no effects on the lubricity of biodiesel. 相似文献
15.
A small series of surfactants based on methyl oleate and glyceroe was synthesized. The synthesis utilizes an epoxidation reaction
of methyl oleate followed by a simple esterification. The resultant products have between two and seven glyceride units, and
their performance properties, including aqueous surface tensions and dynamic aqueous surface tensions, were studied. The droplet
size of soybean oil/water emulsions made with each surfactant was also studied. The surfactants show properties similar to
alcohol ethoxylates, such as the reduction of aquous surface tension to ∼34 mN m−1. Additionally, because the synthesis leaves the epoxide functionality in the surfactant, further modification for performance
optimization is possible. 相似文献
16.
The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions 总被引:1,自引:0,他引:1
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends. 相似文献
17.
18.
本研究以甲醇及甲缩醛为原料、酸性分子筛为催化剂合成聚缩醛二甲醚(PODEn),考察了ZSM-5分子筛的硅铝比、磷改性、粒径尺寸等因素对反应的影响。结果表明,Si/Al为50、P2O5含量为6 wt.%、粒径尺寸为5nm的ZSM-5分子筛催化剂活性较佳,三聚甲醛的反应转化率达到95.2%,PODEn(n=2~4)的选择性为58.0%。 相似文献
19.
20.
Investigation of the performance and emissions of bus engine operating on butanol/diesel fuel blends 总被引:2,自引:0,他引:2
An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8% and 16% (by vol.) n-butanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, water-cooled, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors’ laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two butanol/diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), is a very promising bio-fuel for diesel engines. The differing physical and chemical properties of n-butanol against those for the diesel fuel, aided by sample cylinder pressure and heat release rate diagrams, are used to interpret the observed engine behavior. 相似文献