首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《煤》2016,(3):3-6
文章简要介绍了一种新型煤层增透技术——二氧化碳气相压裂,并通过现场试验测试了试验区域原始煤层与气相压裂后有效抽采半径与钻孔瓦斯抽采量。通过数据分析认为,原始煤层有效抽采半径为58 d达到1.5 m,实施气相压裂后,煤层有效抽采半径为57 d达到3 m,抽采钻孔有效抽采半径有明显增加,并且气相压裂后钻孔瓦斯抽采量提高2倍以上。  相似文献   

2.
赵伟伟 《煤》2020,29(6)
针对低渗高瓦斯松软煤层面临的瓦斯抽采率低的难题,提出运用顺层钻孔水力导向压裂增透技术改造煤层原始瓦斯赋存状态以提高瓦斯抽采率。理论分析了煤层水力压裂增透机理,并推导得出了距离水力压裂钻孔R处的煤体渗透率方程,分析发现压裂钻孔周围煤体渗透变化规律以及渗透率与压裂时间的关系。数值模拟研究得出常规顺层钻孔水力压裂增透半径为3 m,而运用水力割缝后进行导向水力压裂增透半径达到了6 m。现场试验表明,运用水力导向压裂增透技术能够有效提高低渗高瓦斯松软煤层的渗透性,从而提高本煤层瓦斯抽采效果。  相似文献   

3.
水力压裂增透技术在瓦斯抽采中的应用   总被引:13,自引:2,他引:11  
为了提高低透气性突出煤层的瓦斯抽采量,达到抽采消突的目的,在李子垭南二井进行了水力压裂增透技术现场试验,对水力压裂技术在高瓦斯、低透气性突出煤层中的运用效果进行了试验考察,并分析了水力压裂煤体致裂增透机理.试验结果表明:对煤层进行钻孔水力压裂后可有效提高煤层的透气性和钻孔瓦斯抽采效果,压裂前后钻孔瓦斯自然流量提高127.6倍以上,水力压裂钻孔在煤层走向方向上的影响半径可达50m以上.  相似文献   

4.
高瓦斯突出煤层预抽瓦斯消突是突出矿井煤巷掘进前的主要技术措施。由于我国煤矿煤层透气性低,原始煤层预抽煤层瓦斯效果差,抽放时间长,为提高低透气性高瓦斯突出煤层的瓦斯抽采效果,在振兴二矿11031下副巷底抽巷对比非增透区试验考察了水力冲孔增透区、水力冲孔+压裂增透区预抽瓦斯效果。试验结果表明,实施水力增透措施后,有效扩大了钻孔抽采瓦斯影响半径,提高了煤层的透气性,增加了瓦斯抽采量,区域瓦斯治理效果明显。  相似文献   

5.
针对豫西"三软"煤层水力冲孔增透后瓦斯抽放浓度及流量衰减快的问题,采用水力压裂、水力扩孔综合增透措施,通过瓦斯涌出量、作用半径、抽采量对比,研究了综合水力化措施的应用效果。结果表明,综合水力化措施能有效解决防突、增加煤层透气性及煤层瓦斯涌出量,水力压裂半径达到20.0~25.0m,水力扩孔影响半径达到6m以上;水力扩孔后钻孔抽采浓度较普通钻孔增加4~7倍,流量衰减延长3~5倍。  相似文献   

6.
介绍了针对低渗难抽采煤层的增透强抽新型二氧化碳气相压裂技术,并通过现场试验测试了原始煤层与实施气相压裂后煤层透气性系数与钻孔瓦斯衰减系数的变化。通过数据分析表明,气相压裂技术能显著增加钻孔周围煤层有效裂隙数量,提高煤层透气性,降低钻孔瓦斯衰减程度,提高低渗透难抽采煤层瓦斯抽采效率。  相似文献   

7.
碎软低透突出煤层定向长钻孔整体水力压裂高效增透技术   总被引:1,自引:0,他引:1  
针对碎软低透突出煤层增透范围小、衰减速度快、抽采有效周期短等问题,以阳泉矿区15#煤层为研究对象,分析了长钻孔压裂增透机理,提出与煤层定向长钻孔相结合的煤矿井下长钻孔整体压裂增透技术。结合自主研发的整体压裂装备和工艺技术,实现了压裂钻孔的快速、稳定封孔,一次性压裂段孔长202 m的整体水力压裂施工,累计注水量2865m~3,最大泵注瞬时流量57.75 m~3/h,最大注水压力14.8 MPa。检测结果表明:压裂增透施工后,煤层透气性系数提高了4.88倍,最大影响半径达到了60m,流量衰减系数降低至压裂前的0.13倍,瓦斯含量降低至原始含量的0.55倍,实现了增透范围大、抽采时效长的瓦斯抽采效果,为碎软低透突出煤层强化增透和井下瓦斯高效抽采提供了技术保障。  相似文献   

8.
《煤矿开采》2013,(2):88-90
由于我国煤矿煤层透气性低,原始煤层预抽煤层瓦斯效果差,抽放时间长,为提高低透气性高瓦斯突出煤层的瓦斯抽采效果,在振兴二矿11031下副巷底抽巷对比非增透区试验考察了水力冲孔增透区、水力冲孔+压裂增透区预抽瓦斯效果。试验结果表明,实施水力增透措施后,有效扩大了钻孔抽采瓦斯影响半径,提高了煤层的透气性,增加了瓦斯抽采量,区域瓦斯治理效果明显。  相似文献   

9.
为提高预抽煤层瓦斯消突效果,本文试验了下向穿层钻孔卸压增透强化抽采技术,并在高抽巷区域预抽钻孔中进行了实践。水力冲孔实施后,钻孔的卸压影响范围增大,钻孔周围的煤体变形和透气性增大,抽采瓦斯效果显著提高。对比水力冲孔前后的钻孔瓦斯压力和抽采量变化表明,水力冲孔影响半径达到10m,有效影响半径大于5m。与水力冲孔钻孔平距2.5m抽采孔,瓦斯抽采纯量增大4.25倍,平距5m~6m抽采孔瓦斯抽采纯量增大1.5倍。水力冲孔卸压增透强化抽采技术卸压增透范围大,提高抽采效果显著,为高突煤层预抽消突提供了一种行之有效的方法,值得在低透气性高瓦斯突出煤层消突实践中推广应用。  相似文献   

10.
瓦斯预抽增透一直是瓦斯治理工作的瓶颈,为了解决这一难题,提出水力压裂增透技术,分析了水力压裂增透技术的原理、水力压裂设备及钻孔布置工艺。在潘一煤矿32321底板巷开展了A组煤水力压裂增透试验,试验表明:压裂区域钻孔抽采半径为原始煤体的2倍;单孔瓦斯预抽纯量为原始煤体的3.5倍;煤层预抽达标时间缩短了51.6%;压裂有效影响半径倾向上达50 m,走向上达70 m,压裂后抽采半径走向上12 m,倾向上10 m,比原始抽采半径5 m增大1倍。  相似文献   

11.
为了提高低透高突煤层瓦斯抽采效率,达到快速消突的目的,提出了水力压裂优化技术,主要包括采用了大流量、高压力的水力压裂成套设备;优化了压裂钻孔的封孔技术;改进了水力压裂的施工工艺,将压裂过程中注水压力设计成逐渐升高过程,并对改进后的压裂技术进行增透效果考察。试验结果表明:通过对水力压裂进行优化后,压裂的影响半径可达60m;相同抽采条件下,瓦斯抽采纯量与增透前相比平均提高了2.2倍,与采用普通水力压裂相比平均提高了1.3倍;煤层透气性系数提高了6.0倍,达到了提高瓦斯抽采效率和快速消突的目的。  相似文献   

12.
《煤矿安全》2016,(7):155-159
为提升水矿集团矿井瓦斯防治技术及相应装备水平,积极响应我国煤炭工业"十三五"科技发展规划的号召,在大湾煤矿西井开展了穿层钻孔水力压裂技术现场示范性试验研究,对水力压裂技术应用在黔特有地质条件下的松软低透煤层进行了试验考察。结果表明:穿层钻孔水力压裂技术能够有效提高煤岩体的透气性和钻孔瓦斯抽采效果,压裂区域的煤层透气性系数增大了18.37倍;压裂影响半径为40 m;单孔瓦斯抽采浓度和抽采纯量分别为45.04%、0.031 m3/min,与原始煤层相比均增加了2倍以上。  相似文献   

13.
为了提高井下低透气性煤层瓦斯抽采钻孔瓦斯抽采效果,开发了适合中等偏硬低透煤层裸眼钻孔高压稳定封孔装备,采用了本煤层定向长钻孔整体水力压裂增透技术,分析了本煤层定向长钻孔水力压裂增透机理,并进行了水力压裂强化增透试验。根据压裂施工过程中压裂参数变化规律,利用压裂前后煤层全水分和钻孔瓦斯参数变化对比,综合考察和评价了水力压裂增透效果和影响范围。研究表明:压裂过程中最大注水压力24.6MPa,发生多次明显压降,最大压降5.2MPa。水力压裂增透后,煤层瓦斯日抽采纯量提高了12.70倍,百米钻孔瓦斯抽采量提高了2.67倍,压裂最大影响半径达到了 38m,平均超过30m,提高了瓦斯抽采效率。  相似文献   

14.
针对松软低渗突出煤层瓦斯含量大、难抽采,石门揭煤过程中易发生突出等问题,研究了定向水力压裂增透消突技术。首先,阐明了定向水力压裂增透机理,通过理论计算得出煤层起裂压力、流量、注水量分别为22.8~30.5 MPa、130~200 L/ min和 216 m3。据此,在揭煤预抽巷道内布设4个水力压裂孔和2个裂隙导向孔。压裂过程中,泵压、平均注水流量、单孔注水量分别达到28~31 MPa、140~177L/ min和260~330 m3,同理论计算的数据基本吻合。试验结果表明:定向水力压裂影响半径大于30 m,煤层透气性系数达到0.840 m2/ ( MPa2-d),是原始煤层的60 倍﹔单孔瓦斯浓度提高50%~80%,百孔抽采纯量达 1.9 m3 / min,瓦斯抽采量提高90%。采用定向压裂后,揭煤钻孔工程量缩减64%,抽采达标时间比预计工期提前了36 d。该技术可为类似瓦斯治理工程提供借鉴。  相似文献   

15.
针对斜沟煤矿18205工作面因煤层透气性差导致瓦斯抽采效率低,通过理论研究和现场试验的方法,提出液态CO2与水交替充装压裂增透技术以有效增大煤层的透气性系数。研究了煤层在CO2与水交替充装压裂之下,水、CO2和煤三者之间发生相互作用,最终对煤层产生了疲劳损伤作用,增加煤层的裂隙,提高瓦斯抽采效果。现场试验表明:18205工作面开展CO2与水交替充装压裂技术后,压裂钻孔瓦斯抽采浓度和纯量明显比检验钻孔高,有效抽采半径增大到25 m,明显提高了瓦斯抽采效果。  相似文献   

16.
针对阳泉矿区碎软低渗高突煤层开展了井下长钻孔整体水力压裂增透技术的工程试验研究,工程实现了井下一次性整体压裂煤孔段长度达307 m,单孔注入水量达1 510 m3,最大注水压力达26.09 MPa。效果检测表明钻孔压裂影响半径最大达58 m,压裂后煤层透气性系数提高了2.67倍,百米钻孔瓦斯流量衰减系数降低了55%,230 d内钻孔日抽采纯甲烷1 395~2 810 m~3,平均2 173 m~3,钻孔累计抽采纯甲烷50.86×10~4m~3,抽采瓦斯浓度为49.38%~83.70%,平均64.31%。分析认为:水力压裂能改善煤层裂隙和孔隙的连通性、降低煤层有效应力、提高煤层渗透率,注水能促进煤层瓦斯从吸附态向游离态转化,是煤层压裂后钻孔高效抽采瓦斯的关键,依据填砂堵缝压裂技术原理提出了碎软低渗煤层长钻孔整体水力压裂煤层裂隙开启、扩展和延伸机制。工程试验成果及认识可为井下长钻孔整体水力压裂增透高效抽采瓦斯提供借鉴。  相似文献   

17.
水力压裂是解决深部低透煤层抽采瓦斯困难的主要方法之一,为了进一步提升瓦斯高效抽采及客观评价压裂效果,有必要对压裂后煤层瓦斯含量的影响规律进行研究。在平煤股份十二矿深部低透煤层开展了底抽巷上行穿层钻孔水力压裂增透试验,设计了18个压裂效果考察钻孔,通过取样测定每个考察钻孔的瓦斯含量,详细分析了水力压裂后目标煤层及邻近煤层瓦斯含量的变化规律。研究结果表明:压裂钻孔周围35 m范围内目标煤层的瓦斯含量较原始瓦斯含量平均降低了63%,邻近煤层的瓦斯含量较原始瓦斯含量平均降低了27%;沿目标煤层倾向的瓦斯含量平均降幅高于走向。研究结果可为深部低透煤层水力压裂钻孔与抽采钻孔的优化设计提供参考。  相似文献   

18.
为了准确测定割缝钻孔的有效抽采半径,基于煤层原始瓦斯含量和压力,通过将预抽率30%与残余瓦斯含量8 m3/t这2个消突指标相结合,提出了新的割缝钻孔有效抽采半径判定指标:当煤层原始瓦斯含量11.3 m3/t时,将压降大于煤层原始瓦斯压力的50%作为确定有效抽采半径的指标;当煤层原始瓦斯含量11.3 m3/t时,将压降64/q2作为确定有效抽采半径的指标。在杨柳煤矿进行了现场试验,最终确定割缝钻孔的有效影响半径为5 m。通过对抽采指标及残余瓦斯含量的考察,验证了上述指标的有效性和可靠性。  相似文献   

19.
赵保平  赵红星 《煤》2015,(2):28-31
针对马堡矿15号煤层瓦斯含量高、煤层透气性差、钻孔施工量大、瓦斯抽采率低等问题,提出以15108综放工作面为试验地点进行水力压裂增透试验来增加煤层透气性。通过对水力压裂增透技术原理的研究,分析了水力压裂试验流程,确定了试验设备仪器、压裂工艺参数,最终成功完成了水力压裂试验。并通过对注水压力的变化分析和试验前后抽采效果的对比,总结得出通过对煤层进行水力压裂,可大幅度提高煤层透气性和钻孔瓦斯抽采效果、增加煤层瓦斯抽采半径、缩短抽采周期,有效解决马堡矿瓦斯治理难题。  相似文献   

20.
武栋栋 《中州煤炭》2019,(7):20-24,28
针对高瓦斯低透煤层瓦斯抽采效果差、抽采成本高、抽采时间长等问题,通过应用气相压裂增透技术来强化煤层的瓦斯抽采效果,实验和现场测试分析压裂前后煤样的孔隙裂隙基本参数变化情况,明确增透强化的机理。结果表明:气相压裂煤层孔容和比表面积均以大孔为主;在不同吸附平衡压力和粒径下,压裂煤层的扩散系数随着时间的延长减小的幅度存在差异;气相压裂后煤层孔隙裂隙基本参数都呈现增大的趋势,有利于缩短瓦斯扩散路径,提高瓦斯扩散系数;气相压裂后,钻孔有效抽采半径、煤层透气性系数和渗透率分别提高了2.1~4.3倍、54~96倍和7.54~30.40倍,从而判定压裂煤层由原始难抽采煤层转化为易抽采煤层,气相压裂增透强化瓦斯抽采效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号