共查询到18条相似文献,搜索用时 59 毫秒
1.
采用Gleeble-3800热模拟试验机热模拟压缩试验研究了GH2150合金在不同试验参数下的热变形行为和再结晶演变规律。结果表明,在1000~1200℃范围内,应变速率为0.1~5 s-1,变形量分别为30%、50%、70%条件下,合金峰值应力随变形温度升高而降低,随应变速率降低而降低。结合真应力-真应变曲线及阿伦尼乌斯公式得到了GH2150合金的热变形本构方程,采用该方程得到的计算结果与实际结果的平均相对误差为4.36%,相关系数R=0.992,具有较好的吻合性。绘制GH2150合金动态再结晶图发现大变形量有利于提高再结晶分数,合金再结晶行为在50%变形量下主要受变形温度影响,在70%变形量下采用低应变速率更有利于再结晶发生。 相似文献
2.
GH625合金的动态再结晶行为研究 总被引:1,自引:0,他引:1
采用Gleeble-3800热模拟试验机研究了GH625合金在变形温度为950~1150℃,应变速率为0.001~5s-1条件下的热变形特性,并用OM和TEM分析了变形条件对微观结构的影响。结果表明:当应变量很小时,该合金没有发生再结晶,直到应变量达到0.1时才开始有再结晶晶粒析出。随着变形温度的升高,再结晶晶粒尺寸增大,位错密度降低;当温度较低时显微结构中可以观察到孪晶。当变形温度一定时,随应变速率的增大,再结晶的形核率增大且晶粒变小,位错密度变大;而当应变速率较低时,再结晶进行得比较充分,晶粒尺寸较大。根据实测的应力-应变曲线,获得了该合金发生动态再结晶的临界应变εc和峰值应变εp与Z参数之间的关系:εc=2.0×10-3.Z0.12385,lnεp=-6.02285+0.12385lnZ。此外,还采用定量金相法计算出了合金的动态再结晶体积分数,并建立了该合金动态再结晶的动力学模型:Xd=1-exp[-0.5634(ε/εp-0.79)1.313]。 相似文献
3.
GH625合金的热变形行为 总被引:2,自引:0,他引:2
采用Gleeble-1500热模拟试验机研究了GH625高温合金在应变速率为0.001~1 s-1、变形温度为1223~1373 K条件下的热变形行为。结果表明:当变形温度一定时,随应变速率的升高,合金的峰值应力σp和稳态流动应力σs及对应的应变εp和εs均升高;当变形速率一定时,随变形温度的升高,σp和σs以及εs均降低,但εp基本保持不变。GH625合金在热压缩变形过程中应变速率的降低和变形温度的升高均有利于动态再结晶的发生;根据应力-应变曲线,通过线性回归获得GH625合金的本构方程。 相似文献
4.
针对现场径向锻造直径为Φ235 mm的GH1016合金圆棒横截面组织不均匀的问题,提出了优化的径锻工艺,基于DEFORM-3D有限元软件平台,建立了仿真计算模型,得到各道次横截面温度和等效应变分布,结合GH1016合金动态再结晶状态图,分析了各道次横截面不同位置晶粒动态再结晶发生情况。结果表明:采用优化的径锻工艺进行锻造,坯料的心部和表面的最大温升分别为6和48℃;在锻造过程中第1、第2和第3道次晶粒主要发生加工硬化和部分动态再结晶,第4道次只发生部分动态再结晶,而第5道次只发生加工硬化。对GH1016合金现场取样检检金相结果显示,晶粒度级差为1级,心部平均晶粒尺寸为31μm。优化工艺解决了GH1016合金横截面组织不均的问题,可为其他大规格高温合金的径锻工艺制定提供参考。 相似文献
5.
6.
7.
采用单道次等温压缩实验获得了GH4742合金在变形温度为980~1100℃,应变速率为0.005~5 s-1条件下的应力-应变曲线.以实验数据为基础,运用KM模型、Poliak-Jonas准则、Avrami模型较为系统地描述了该合金动态再结晶过程的流变应力、临界应变量、组织演化动力学等特征.并在Prasad功率耗散率模... 相似文献
8.
GH625镍基高温合金动态再结晶模型研究 总被引:1,自引:0,他引:1
在Gleeble热模拟机上对GH625合金进行了等温热压缩试验,获得了不同变形条件下该合金的真应力-真应变曲线,并对热压缩试样的微观组织进行了分析。通过对实验数据的计算,获得了GH625合金发生动态再结晶所需的临界变形量与变形温度和应变速率的函数关系;建立了合金动态再结晶的运动学方程,用该方程预测的动态再结晶体积分数与实测值吻合较好,误差的平均值为13%;构建了GH625合金的晶粒长大模型,用该模型预测的晶粒尺寸值与实测值之间的误差平均值为7.52%。GH625合金动态再结晶的形核方式主要为晶界弓出形核和亚晶合并长大形核。 相似文献
9.
为研究GH90高温合金的动态再结晶行为,在Gleeble 1500热模拟试验机上开展了不同温度和应变速率下的等温压缩试验。根据获得的真应力-真应变曲线分析可知,高温状态下GH90合金的主要动态软化机制为动态再结晶。通过对真应力-真应变数据进行分析和处理,构建了GH90合金的动态再结晶临界应变模型和体积分数模型。通过试样微观组织和模型预测结果的对比表明,所构建的GH90合金动态再结晶数学模型能够对GH90合金动态再结晶行为进行准确描述。 相似文献
10.
利用Gleeble-1500D热模拟试验机,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.03P合金在应变速率为0.01~5 s-1、变形温度为600~800℃、最大变形程度为60%条件下的动态冉结晶行为以及组织转变进行了研究.利用加工硬化率和应变(θ-ε)的关系曲线确定了该合金发生动态再结晶的形变条件为T≥700℃.根据σ-ε曲线确定了不同变形条件下该合金的动态再结晶的体积分数,利用该体积分数建立了该合金的动态再结晶动力学数学模型.该合金动态再结晶的显微组织受变形速率的影响,在变形速率较低时,晶体内有较多的再结晶晶粒;而在较高应变速率下,合金几乎没有发生动态再结晶. 相似文献
11.
在Gleeble-1500D热模拟实验机上,在应变速率为0.01~5 /s、变形温度为600~800 ℃条件下,采用高温等温压缩实验对Cu-2.0Ni-0.5Si-0.03P合金的流变应力行为进行研究。结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为750和800 ℃时,合金热压缩变形流变应力出现明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出该合金热压缩变形时的热变形激活能和本构方程。 相似文献
12.
An AZ61 alloy was subjected to hot compression at temperatures ranging from 523 K to 673 K, with strain rates of 0. 001 - 1 s^-1. Flow softening occurs at all temperatures and strain rates. There are peak and plateau stresses on flow curves. The initiation and evolution of dynamic recrystallization(DRX) were studied by the flow softening mechanism based on the flow curves and microstructural observations. A linear relationship was established between the logarithmic value of the critical strain for DRX initiation(lnεc) and the logarithmic value of the Zener-Hollomon parameter (lnZ). The volume fraction of DRX grain (φd) is formulated as a function of the process parameters including strain rate, temperature, and strain. The calculated values of φd agree well with the values extracted from the flow curves. The size of DRX grain(d) was also formulated as a function of the Zener- Hollomon parameter. This study suggests that DRX behavior of AZ61 can be predicated from plastic process parameters. 相似文献
13.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.15Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究.分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系.并研究了在热压缩过程中组织的变化.结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响. 相似文献
14.
15.
为了研究GH1016合金的高温热变形行为,利用Gleeble-3500热模拟试验机进行变形温度在1000~1150℃范围内,应变速率为0. 1~10 s-1,总压缩变形量为60%的热压缩试验,通过获得的真应力-真应变曲线研究了其变形行为。研究结果表明:真应力随变形温度的降低和应变速率的升高而增加。在一定的变形温度下,随着应变速率的增加,峰值应力和峰值应变均增加;在一定的应变速率下,随变形温度的升高,峰值应力和峰值应变减小。根据真应力-真应变曲线中的峰值应变和峰值应力数据,利用数据拟合的方法分别求得了GH1016合金的热变形本构方程和临界变形条件方程。在本实验条件下,GH1016合金发生动态再结晶的热激活能为456. 55 k J·mol-1。 相似文献
16.
A. A. Babaréko O. S. Belova V. N. Kopylov I. N. Razuvaeva Yu. D. Khesin 《Metal Science and Heat Treatment》1991,33(9):703-707
Conclusion Dynamic recrystallization of cast -grain in alloys type VT-6S, which proceeds most actively at high temperatues (1200°C) and high rates of deformation (10 sec–1), causes refinement of cast grain and reorientation of crystallites.DeceasedA. A. Baikov Institute of Metallurgy. TsNIIKM Prometei. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 34–36, September, 1991. 相似文献
17.
采用粉末冶金和轧制工艺制备TZM合金,利用金相显微镜和扫描电镜观察TZM合金烧结坯和板材的组织.研究表明:烧结坯的密度为9.94 g/cm3,硬度为65 HRC,烧结坯组织为等轴晶,晶粒分布均匀,平均晶粒尺寸约为10μm,晶界轮廓清晰.轧制后的TZM合金板材密度为10 g/cm3,抗拉强度为914 MPa,伸长率为4.6%.TZM合金板材在1000、1100、1200、1300、1400、1500、1600℃退火后样品的显微组织分析与对比表明,1000 ℃、1100℃时TZM合金板材处于回复阶段,1200℃时开始再结晶,1600℃时TZM合金板材已经完全再结晶. 相似文献