首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以有机胺、甲醛和有机酮为原料合成了曼尼希碱酸化缓蚀剂PA-CI。通过红外光谱对合成产物的结构进行了表征,并分别采用静态挂片失重法和电化学分析法评价了其缓蚀性能与机理。静态失重法实验结果表明,在20%盐酸中,缓蚀剂加量为0.8%时,N80钢的腐蚀速率为2.14 g/(m~2·h);电化学研究结果表明,该缓蚀剂是以抑制阳极为主、作用机理为几何覆盖效应的混合型缓蚀剂,其在N80钢片表面上的吸附符合Langmuir单分子层等温吸附。通过相关热力学与腐蚀动力学参数的计算,进一步阐述了该缓蚀剂的吸附机理,其在N80表面的吸附为化学吸附,且吸附状态是无序化的。  相似文献   

2.
酸化缓蚀剂HSJ-2的合成及缓蚀性能评价   总被引:2,自引:0,他引:2  
采用苯乙酮、甲醛、胺B通过曼尼希反应合成出一种酸化用缓蚀剂HSJ-2,通过对影响产品性能的各因素实验研究,得到合成缓蚀剂HSJ-2的优化方案为:单体配比1:1:0.6,反应温度100℃,反应时间5h,pH值1.0.2.0。同时对合成出的缓蚀剂HSJ-2进行了不同实验条件下的缓蚀性能评价,实验结果表明,缓蚀剂HSJ-2在不同浓度盐酸或土酸体系中,加量为1.0%-1.5%均具有较好的缓蚀效果,腐蚀速率均能达到行业标准(SY/T5405—1996)要求,同时缓蚀剂具有较好的抗温性能,抗温达150℃。  相似文献   

3.
为深入研究酸化缓蚀剂的缓蚀作用机理,将实验方法与量子化学、分子动力学相结合分析缓蚀剂分子结构与缓蚀率之间的关系。采用挂片失重法测得五种酸化缓蚀剂甘氨酸,N-[N-[(苯甲氧基)羰基]氨基乙酰基]-,4-硝基苯酯(A)、N-α,N_ω-二苄氧羰基-L-精氨酸(B)、(R)-2-[N-(N-苄基脯氨酰)氨基]二苯甲酮(C)、4-[(4-甲氧亚苄基)氨基]肉桂酸乙酯(D)、5-羟基色氨酸(E)在15%HCl溶液中的缓蚀率,并用金相显微镜观察了腐蚀后N80钢挂片的3D形貌,最后用量子力学和分子动力学相结合的模拟方法对5种缓蚀剂的缓蚀性能进行了理论分析。结果表明,5种酸化缓蚀剂的缓蚀率均大于93%,酸化缓蚀剂缓蚀效果按缓蚀率大小排序为:BADCE,按平均点蚀深度排序为:BADCE,按最大点蚀深度排序为:ABDCE,其中B、D抑制点蚀效果较差;通过量子化学计算得到的酸化缓蚀剂缓蚀性能从大到小依次为:ABDCE,通过分子力学计算得到的缓蚀性能从大到小依次为:ABCDE,理论分析与实验结果基本相符。  相似文献   

4.
酸化缓蚀剂曼尼希碱缓蚀机理的电化学研究   总被引:2,自引:0,他引:2  
由苯乙酮、甲醛及二乙胺合成了曼尼希碱,用电化学方法考察了该曼尼希碱在15%盐酸中对P110钢的缓蚀作用。20℃下的极化曲线表明P110钢在盐酸中发生阳极活性极化过程,随该曼尼希碱加入量的增大(0~1.0%),腐蚀速率减小,自腐蚀电位正移,表明该曼尼希碱为抑制阳极过程为主的缓蚀剂;EIS谱表明该曼尼希碱在钢表面形成的保护膜随温度升高(20~80℃)而减弱;随该曼尼希碱加入量增大而增强。用电化学方法测定的P110钢在15%盐酸中的腐蚀速率,在不加该曼尼希碱时随温度升高而急剧增大,20℃时为2.796g/m2.h,80℃时高达493.4g/m2.h,在同一温度下随曼尼希碱加量增大而减小,同一曼尼希碱加量下的缓蚀率随温度升高而增大,即该曼尼希碱的缓蚀效率随温度升高而增大。图6表2参5  相似文献   

5.
以甲醛、二乙胺和苯乙酮为原料合成了曼尼希碱缓蚀剂,通过正交试验设计得出了最佳合成工艺:反应温度130℃,反应时间6 h,甲醛、二乙胺和苯乙酮的摩尔比0.1:0.13:0.13,pH值为3。通过红外光谱测试,证实了目标产物的结构。对合成出的最优化缓蚀剂ST-2进行了性能研究,发现缓蚀剂用量对缓蚀效果影响明显,当缓蚀剂质量分数达到0.5%时已经达到标准中一级指标水平。ST-2与缓蚀增效剂丙炔醇复配具有良好的协同作用。对于质量分数为15%HCl在90℃下的酸化体系,缓蚀剂的最佳配方为0.1%ST-2+0.5%丙炔醇。  相似文献   

6.
一种曼尼希碱型盐酸酸化缓蚀剂的合成及缓蚀性能   总被引:9,自引:0,他引:9  
以N80钢片在加入2%缓蚀剂的20%工业盐酸中90℃的腐蚀速率为考察指标,通过正交设计合成实验,确定了目标曼尼希碱的最佳合成条件:苄胺、苯乙酮、甲醛摩尔比1∶1∶2.5,反应温度80℃,反应总时间14 h,pH值2~3.在最佳条件下合成的该曼尼希碱中加入5%增溶剂(一种非离子表面活性剂),配入适量增效剂(炔醇),得到了盐酸酸化缓蚀剂.性能考察实验结果如下.N80钢片在20%工业盐酸中、90℃时的腐蚀速率随缓蚀剂加量增大(0.5%~3.0%)而减小,加量1.0%时为0.95 g/m2·h;加量1.0%时的腐蚀速率随温度升高(50~100℃)而增大,且表明其耐温性良好;加量1.0%、90℃时的腐蚀速率随HCl质量分数的增大(10%~28%)而增大,在28%盐酸中略高于2g/m2·h.极化曲线及钢片表面扫描电镜照片表明,该剂为以阳极控制为主的混合型吸附成膜缓蚀剂.图6表1参6.  相似文献   

7.
盐酸酸化缓蚀剂DS-1的合成及性能评价   总被引:9,自引:0,他引:9  
为研究适用于盐酸介质的高效酸化缓蚀剂,首先利用曼尼希反应合成不同结构的曼尼希碱并对其缓蚀性能进行评价,同时运用正交实验设计法对曼尼希反应过程的各种影响因素进行优化,对具有最佳缓蚀效果的曼尼希碱进行复配。结果表明,在其它反应条件一定时,所选芳香酮较环烷酮、脂肪酮生成的曼尼希碱具有更好的缓蚀效果;反应介质中盐酸的加量及反应温度对曼尼希反应的发生起重要作用;合成的曼尼希碱DS-1及其复配产物适用于120℃以下地层的盐酸酸化缓蚀且具有使用浓度低、缓蚀效率高的特点。  相似文献   

8.
一种盐酸酸化缓蚀剂的合成及性能评价   总被引:3,自引:0,他引:3  
以腐蚀速率为评价指标,通过单因素合成实验,确定了曼尼希碱缓蚀剂主剂的最佳合成条件:pH=4,环己胺、甲醛、苯乙酮摩尔比1∶2∶1,反应温度90℃,反应时间8 h.将合成的曼尼希碱与2.5%增溶剂脂肪醇聚氧乙烯醚、溶剂甲醇复配,得到盐酸酸化缓蚀剂.分别用静态挂片失重法和电化学方法考察其缓蚀性能.结果表明,90℃下,N80钢片在15%工业盐酸介质中的腐蚀速率随缓蚀剂加量的增大而减小;随盐酸质量分数增大而增大;腐蚀速率随温度升高而增大.90℃下,缓蚀剂加量为1.0%时的腐蚀速率为3.635g/(m2·h),满足酸化缓蚀剂一级品≤4g/(m2·h)的要求.该缓蚀剂是以抑制阴极为主的混合型缓蚀剂,作用机理主要为几何覆盖效应.图6表4参6  相似文献   

9.
YSH-05高温酸化缓蚀剂缓蚀性能研究   总被引:2,自引:0,他引:2  
室内合成了母体缓蚀剂MNX,复配以四种增效剂,制备出了高温酸化缓蚀剂YSH-05。用静态失重法在不同温度、不同加量以及不同酸液类型及酸液浓度下,对其缓蚀性能进行了综合评价,并对其缓蚀机理进行了探讨。在15%的盐酸、氢氟酸和土酸中,90℃时的腐蚀速率分别为2.3974 g/(m~2·h),5.9427g/(m~2·h)和4.2860 g/(m~2·h),缓蚀率均大于99%,耐温可达150℃,具有良好的缓蚀性能。  相似文献   

10.
为了解决塔里木油田污水运输管网的腐蚀问题,合成了3种咪唑啉季铵盐缓蚀剂,在油田模拟水中,利用静态挂片质量损失法和电化学极化曲线法测试了3种缓蚀剂的缓蚀性能,并初步探讨了咪唑啉类缓蚀剂的缓蚀机理。试验结果表明:在油田模拟水中,月桂酸咪唑啉季铵盐缓蚀剂的缓蚀效果最好;按不同比例复配缓蚀剂的缓蚀效果更好,苯甲酸咪唑啉和月桂酸咪唑啉复配缓蚀剂添加量为600 mg/L时缓蚀效率可达97.31%。极化曲线研究表明:在盐酸介质中添加苯甲酸季铵盐缓蚀剂可使自腐蚀电位正移,对阳极反应有较强抑制作用;加入油酸季铵盐缓蚀剂和月桂酸季铵盐缓蚀剂则使得自腐蚀电位负移,对阴极反应有较强抑制作用。  相似文献   

11.
一种酸化缓蚀剂的合成及缓蚀效果评价实验研究   总被引:1,自引:0,他引:1  
袁志平  陈林  陈俊斌 《钻采工艺》2012,35(2):87-89,13
以苯乙酮、甲醛、对苯二胺为原料,通过对反应时间、反应温度、原料配比的筛选,合成了一种酸化缓蚀液剂—曼尼希碱(Mannich)。研究实验表明,该酸化缓蚀剂在酸液中具有良好的溶解分散性和稳定性,能在金属表面形成较为牢固的多分子吸附膜,在常压、90℃温度条件下具有较好的缓蚀性能。该酸化缓蚀剂还可与六次甲基四铵、碘化钾、丙炔醇复配使用,进一步提高缓蚀率,并通过实验确定了酸化缓蚀体系的配方。  相似文献   

12.
以苄胺、苯乙酮、甲醛为原料合成了一种曼尼希碱,通过正交实验得到最佳合成条件:苯乙酮、甲醛、苄胺物质的量比1:1.5:1.5,反应时间10h,反应体系pH值2—3,反应温度90℃。最佳条件下合成的曼尼希碱与增效剂丙炔醇、碘化钾以质量比1:0.2:0.5复配,得到曼尼希碱型盐酸酸化缓蚀剂。缓蚀性能考察实验结果表明,研制的曼尼希碱型盐酸酸化缓蚀剂具有良好的缓蚀效果。在15%的盐酸介质中,90℃下,缓蚀剂用量为1.O%时,钢片腐蚀速率仅为2.987g/(m^2·h);当温度升高到150℃时,增加缓蚀剂用量到1.5%,腐蚀速率仅为3.646g/(^2·h);含量低于20%的盐酸介质中,缓蚀剂用量为1.0%时,腐蚀速率低于4g/(m^2·h)。采用红外光谱对合成产物进行了表征。  相似文献   

13.
张勇  陆原  张颖  胡廷  赵璐 《油田化学》2013,30(1):111-114
本文采用仲胺、苯乙酮、甲醛为原料,通过曼尼希缩合反应,合成了一种油田酸化缓蚀剂H-402,研究了合成工艺对产物性能的影响及缓蚀机理。结果表明:在仲胺/苯乙酮/甲醛摩尔比1:2:5、反应温度80℃、反应时间10h条件下,所合成的H-402的缓蚀效果最佳。该缓蚀剂与聚醚、丙炔醇等具有增效作用,加剂量为0.5%时达到缓蚀剂一级水平。该缓蚀剂为抑制阳极过程为主的混合型缓蚀剂。扫描电镜显示,加入0.5%H-402后,Q235挂片表面的腐蚀形态得到极大的改善。  相似文献   

14.
用失重法、极化曲线法和扫描电镜法评价了新开发研制的盐酸铝缓蚀剂JA—1的缓蚀性能,并确定JA—1是一种阴极型缓蚀剂。研究表明,JA—1是一种性能优良、可应用于工业生产的高效盐酸铝缓蚀剂。  相似文献   

15.
笔者以喹啉季铵盐和有机胺为原料复配的缓蚀剂,能耐高温,耐浓盐酸,酸化缓蚀性能优良。文中应用电化学极化曲线法和吸附理论对这种缓蚀剂的缓蚀要进行了讨论,认为该缓蚀剂属于混合型缓蚀剂,它对金属腐蚀的阴,阳极过程同时起抑制作用。其原因是盐酸中的Cl-与该缓蚀剂中的有机阳离子以交错吸附方式吸附于金属铁表面,表面吸附力大,吸附膜稳定性强,缓蚀作用高。实验表明该缓蚀剂的缓蚀效率可达92.4%以上。另外,缓蚀增效  相似文献   

16.
以X肼、苯甲醛和苯乙酮为原料合成了一种曼尼希碱,利用正交试验得出最佳合成条件如下:n(醛)∶n(胺)=3.1,n(酮)∶n(胺)=3.0,pH为2,反应时间为7h,反应温度为80℃.用失重法和电化学方法评价了产物在不同温度、不同酸条件下的缓蚀性能,结果表明,在15%盐酸中,当缓蚀剂加量为1.0%时,N80钢片腐蚀速率为0.37g/(m2 h),高于SY 5405-1996《酸化用缓蚀剂性能试验方法及评价指标》中缓蚀性能评价的一级标准,且缓蚀剂有较好的抗温抗酸性能,动电位极化曲线测定表明,该缓蚀剂是以抑制阳极过程为主的混合控制型缓蚀剂.  相似文献   

17.
一种高温盐酸酸化缓蚀体系的研究与评价   总被引:4,自引:0,他引:4  
介绍了一种曼尼希碱——— 9#缓蚀剂合成方法 ,并评价了它的缓蚀性能。评价结果表明 :在 90℃、常压下 ,1%的 9#缓蚀剂可使N80钢片的腐蚀速率在 2 0 %盐酸中由 2 0 0 1.3g/ (m2 ·h)降至 10 9.6g/ (m2 ·h) ,说明它具有一定的缓蚀效果。在此基础上 ,选择炔醇、碘化物、六次甲基四胺等几种化学剂与9#缓蚀剂进行复配 ,复合缓蚀剂体系在 90℃、12 0℃下的腐蚀速率均达到了一级标准 ,16 0℃的腐蚀速率达到了二级标准。同时 ,复合缓蚀体系在酸液中的溶解性良好 ,与N80钢片反应前后无沉淀生成 ,且与其他添加剂的配伍性良好。  相似文献   

18.
本文研究了甲醛和“7801”酸化缓蚀剂在高温盐酸溶液中的缓蚀性能,并对它们的缓蚀作用机理进行了初步探讨。  相似文献   

19.
用三乙烯四胺与月桂酸制备出缓蚀剂中间体,经过曼尼希反应改性,利用FTIR(红外光谱)对样品进行表征鉴定。通过动态质量损失试验和电化学方法进行测试,对曼尼希反应前后的缓蚀剂缓蚀性能进行综合评价;使用扫描电镜(SEM)、能谱分析(EDS)和模拟等温吸附方程的方法对缓蚀成膜机理进行研究。研究结果表明:曼尼希反应前后的缓蚀剂均属于阳离子型缓蚀剂,满足Langmuir等温吸附方程;10号碳钢在酸性环境进行腐蚀试验,缓蚀剂质量浓度为3 g/L时,曼尼希反应前后的缓蚀剂均有较好的缓蚀性能;曼尼希反应前后的缓蚀剂均发生化学吸附或者单层物理吸附,金属表面的吸附作用属于反应沉积和吸附覆盖协同作用。  相似文献   

20.
文章探索了缓蚀剂热失重与其缓蚀性的关系,分析测定了XK-1系列的5个缓蚀荆样品的热失重特性,同时测定了其在HC1溶液中的腐蚀速率,热失重结果,除第一次的溶剂失重卟,5个样品都出现第二次失重,有3个样品出现第三次失重,第二次失重越大,缓蚀剂的缓蚀效果越差,说明缓蚀剂热失重越困难,缓蚀效果越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号