首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以混合溴源制备BiOBr,通过水热法制备Sb_2O_3/BiOBr复合光催化剂。在模拟可见光条件下研究了复合光催化材料对水产养殖废水中NH_4+-N的去除效果。结果表明,当Sb_2O_3的掺杂量为3%,n(NaBr)∶n(CTAB)=1∶1,催化剂用量0.4 g/L时对NH_4+-N的去除效果。结果表明,当Sb_2O_3的掺杂量为3%,n(NaBr)∶n(CTAB)=1∶1,催化剂用量0.4 g/L时对NH_4+-N的降解率最高,2 h内NH_4+-N的降解率最高,2 h内NH_4+-N的降解率达到了89.1%。这与复合物表面羟基(—OH)的产生及其表面强内电场(110)晶面的暴露密切相关。  相似文献   

2.
为了进一步提高BiOBr在可见光范围内的光催化性能,通过简单的低温液相法制备了不同质量掺杂比的三氧化二锑/溴氧化铋(Sb_2O_3/BiOBr)复合光催化材料。利用X射线衍射仪(XRD)、扫描电镜形貌分析(SEM)、X射线光电子能谱(XPS)、紫外-可见光漫反射(UV-Vis/DRS)、透射电子显微镜(TEM)等对材料进行了表征,并以罗丹明B(RhB)为目标污染物,在模拟可见光条件下研究了复合物对RhB的光催化降解性能。结果表明,Sb_2O_3的掺杂显著提高了复合物的吸附能力;同时,Sb_2O_3的掺杂促进了BiOBr表面羟基(OH~-)的产生,该基团能够有效捕获空穴(h~+),从而提高光催化活性。当Sb_2O_3掺杂量为3%(质量分数)时降解效果最佳,60min内Rh B的降解率比纯相BiOBr提高了20.03%,达到了95.41%。多次重复实验,复合物的光催化性能并没有发生明显的减弱,表明复合物同时也具有较好的稳定性。  相似文献   

3.
利用生物模板法制备TiO_2,将(NH_4)_3PW_(11)O_(39)Sn负载于TiO_2上,制备具有多孔结构的(NH_4)_3PW_(11)O_(39)Sn/TiO_2复合材料。采用XRD、DRS、SEM、TEM和XPS等手段表征了(NH_4)_3PW_(11)O_(39)Sn/TiO_2的微观形貌和结构。采用Tauc Plot法计算(NH_4)_3PW_(11)O_(39)Sn/TiO_2的禁带宽度为2.45 e V,吸收波长达到506 nm。通过可见光催化性能实验考察了(NH_4)_3PW_(11)O_(39)Sn和TiO_2的质量添加比对AR3R降解效果的影响。结果表明,当(NH_4)_3PW_(11)O_(39)Sn和TiO_2的质量比为1∶1时对AR3R的降解效果较好,可见光下反应30 min,降解率可达100%左右。自由基捕获实验结果表明,降解过程中h~+和·OH起主要的氧化作用,·O_2~-起辅助作用。  相似文献   

4.
以Bi(NO_3)5·5H_2O、Na Br、H_2WO_4为原料,采用一步水热合成法合成不同n(W)∶n(Br)的WO_3/BiOBr复合催化剂,并通过SEM和TEM对催化剂进行表征分析。以甲基橙为探针污染物,考察前驱液pH、水热温度、水热时间和n(W)∶n(Br)对WO_3/BiOBr复合催化剂活性的影响。结果表明,在pH为10.2、100℃水热时间6 h合成n(W)∶n(Br)为0.02的WO_3/BiOBr复合催化剂活性最好,光照120 min后,对目标污染物的降解率达99.39%,较BiOBr催化剂(合成条件为原始pH值,100℃水热反应6 h)提高了30.85%。采用水热合成法制备的WO_3/BiOBr复合催化剂具有良好的可见光活性。  相似文献   

5.
利用废磷酸作为MAP法的磷源处理污泥压滤液厌氧出水中的NH_3-N,考察了反应时间、搅拌方式、pH值、氮磷镁物质的量之比、初始NH_3-N浓度对NH_3-N去除效果和残余PO_4~(3-)浓度的影响,并确定了最佳反应条件。试验结果表明,当原水NH_3-N的质量浓度为700.42 mg/L,PO_4~(3-)的质量浓度为0.33 mg/L时,常温下,最佳反应条件为p H值为9,n(NH_4~+)∶n(PO_4~(3-))∶n(Mg~(2+))=1∶1∶1,曝气搅拌反应10 min。此时,NH_3-N的去除率可达84.91%,出水NH_3-N的质量浓度为105.69 mg/L,残余PO_4~(3-)的质量浓度为6.49 mg/L。以废磷酸作为沉淀剂磷源的MAP法,具有较好的NH_3-N处理效果,可用于高浓度NH_3-N废水的预处理。  相似文献   

6.
以氧化铟(In_2O_3)纳米球作为基体,采用水热法制备了氧化铟/硫化镉(In_2O_3/CdS)复合光催化剂,并利用XRD、SEM等对所制备复合光催化剂进行了表征。结果表明:复合光催化剂由立方相的In_2O_3纳米球和六方相CdS棒状结构组成,且In_2O_3纳米球附着于CdS棒状结构表面上。光学性能测试和光降解实验发现:所得复合光催化剂与纯In_2O_3和纯CdS相比,不仅光响应范围增加,而且光催化亚甲基蓝(MB)的活性也得到显著改善。当In_2O_3/CdS中n(In_2O_3)∶n(CdS)=1∶4时,光催化效率改善尤为明显,当复合催化剂的质量为0.05 g时,MB转化率达到96.2%;这可能是由于CdS接受In_2O_3表面上的光生电子,减少了光生电子与空穴的复合机会,因而提高了光催化降解能力。  相似文献   

7.
常温低基质厌氧氨氧化ASBR反应器的快速启动   总被引:3,自引:0,他引:3  
采用低基质模拟废水〔NH_4~+-N、NO_2~--N分别为(25±0.4)、(33±0.6)mg/L〕,在温度为(23±0.5)℃的条件下,研究了厌氧氨氧化ASBR反应器的快速启动。第Ⅰ阶段HRT为24 h,pH不控制,菌体自溶期出水NH_4~+-N为69 mg/L,活性停滞期出水NH_4~+-N与进水几乎相等;第Ⅱ~Ⅲ阶段,菌体处于活性提高期,HRT分别为12、8 h,pH控制为8.0~8.2,出水NH_4~+-N降低到1.6 mg/L,NO_2~--N均先升高后降低;第Ⅳ阶段HRT为4 h,pH控制为8.0~8.2,出水NH_4~+-N和NO_2~--N均低于1 mg/L,TN去除负荷为352.3 mg/(L·d),△m(NH_4~+-N)∶△m(NO_2~--N)∶△m(NO_3~--N)=1∶(1.33±0.02)∶(0.26±0.02),反应器启动成功。  相似文献   

8.
《化学工程》2016,(5):11-16
采用溶胶-凝胶法对SDR转盘表面进行催化剂的负载,并对负载后的SDR进行光催化降解含酚废水的研究。考察了溶剂、加水量、抑制剂等因素对胶凝时间的影响,得出了制备催化剂薄膜的适宜条件为:n(钛)∶n(水)∶n(乙醇)∶n(盐酸)∶n(冰醋酸)=1∶2∶13.56∶0.05∶1,随后采用XRD、SEM对薄膜进行了表征,结果显示负载的催化剂为粒度分布均匀的锐钛矿型TiO_2。进一步研究了SDR中H_2O_2、UV/H_2O_2、UV/TiO_2、UV/H_2O_2/TiO_2等4种条件下苯酚的降解率和后2种情况下苯酚的矿化率的对比。结果表明:H_2O_2/TiO_2光催化氧化30 min苯酚降解率达到100%,与UV/H_2O_2氧化条件下相比,完全降解时间缩短了30 min,与UV/TiO_2氧化相比,苯酚降解率有大幅度提高;UV/H_2O_2/TiO_2催化氧化条件下2 h的矿化率为89%,较UV/H_2O_2光氧化条件下提高28%。  相似文献   

9.
将Co、Mn、Co-Mn、Co-Mn-Ce分别负载于Al_2O_3上,得到Co/Al_2O_3、Mn/Al_2O_3、Co-Mn/Al_2O_3、Co-Mn-Ce/Al_2O_3等4种催化剂,在30~75℃的条件下对臭氧氧化甲苯反应进行催化,比较了4种催化剂对臭氧氧化甲苯的催化效果。结果表明,复合催化剂Co-Mn/Al_2O_3的催化效果优于单组分催化剂Co/Al_2O_3、Mn/Al_2O_3,75℃时,甲苯降解率达到69.02%;添加助剂Ce的复合催化剂Co-Mn-Ce/Al_2O_3(Co∶Mn∶Ce=1∶1∶0.1,物质的量比)的催化效果最好,75℃时,甲苯降解率达到82.95%。  相似文献   

10.
以完全自养亚硝化颗粒污泥为对象,控制进水NH_4~+-N的质量浓度为80 mg/L,以乙酸钠为碳源,改变进水COD/ρ(TN),考察有机物添加对亚硝化颗粒污泥NH_4~+-N降解性能、产物组分的影响,系统阐述了进水COD/ρ(TN)对亚硝化颗粒污泥性能、不同氮形态变化规律和产物中ρ(NO_2~--N)/ρ(NH_4~+-N)的影响。结果表明,随着COD/ρ(TN)提高,运行周期数增加,NH_4~+-N降解速率下降,NO_2~--N比生成速率和NO_3~--N比生成速率下降,且NO_3~--N比生成速率受抑制更加显著,改变了产物中NO_3~--N和NO_2~--N的组分,导致对亚硝酸盐累积率反而有提高,产物中ρ(NO_2~--N)/ρ(NH_4~+-N)保持在1.0~1.3内的持续时间增加,有利于为后续厌氧氨氧化脱氮提供良好的基质条件。  相似文献   

11.
陈建文 《广东化工》2006,33(6):79-81
乙烯酮(双乙烯酮)是十分重要的化工中间体,其下游产品较多。江苏某化工厂开发生产乙烯酮(双乙烯酮)下游产品三十多个,年生产规模三万多吨,是国内以乙烯酮(双乙烯酮)为中间体生产精细化学品的综合骨干企业。针对乙烯酮(双乙烯酮)下游产品废水特点,该厂结合企业实际,开展了产品优化,结构调整,清洁生产,资源循环利用,节水降耗等工作,从源头削减了污染物的生产。同时投资二千多万元新建预处理装置三套,6000m3/d废水生化处理装置一套,使全厂乙烯酮(双乙烯酮)下游产品的废水得到了有效的治理。  相似文献   

12.
13.
14.
姬波  刘奇峰 《河南化工》2005,22(3):43-44
利用组件技术开发化工原理实验课件,给出了系统层、组件库层和应用层的架构划分。重点讨论了组件库的设计,给出了流体阻力这一典型实验的实现描述。实践证实,基于组件技术可以提高仿真实验的开发效率。  相似文献   

15.
周云  温集强 《水泥》2007,(10):29-30
我厂3号回转窑(Φ4m×60m)生产线在1996年年底由SP窑(产量912t/d)改为NSP窑(产量1320t/d),预分解系统为四级旋风预热器带离线式分解炉  相似文献   

16.
阐述并比较了几种加压设备在乙炔加压清净过程中的性能和特点。  相似文献   

17.
The miscibility of various amorphous polybutadienes with mixed microstructures of 1,4 addition units (cis, 1,4 and trans 1,4) and 1,2 addition units have been investigated. The studies here involved optical transparency, differential scanning calorimetry, and small angle light scattering. It was found that a 90 percent (cis) 1, 4 addition polybutadiene was immiscible with high (91 percent) 1,2 addition polybutadiene. Reduction of the 1,2 content to 71 percent induced an upper critical solution temperature (UCST) with the cis 1,4 polymer. Polybutadienes with 50 percent and 10 percent 1,2 contents were miscible above the crystalline melting temperature of the cis 1,4 polybutadiene. Immiscibility of the 91 percent 1,2 addition polymer was also found with a 10 percent 1,2 polybutadiene. The latter polymer also exhibits an UCST with the 71 percent 1,2 polymer. The results are used to interpret the characteristics of blends of polybutadienes of varying microstructure.  相似文献   

18.
唐蕾 《粉煤灰》2013,(5):5-6
以F类粉煤灰为例,详细介绍了测定粉煤灰中烧失量的步骤、计算数学模型、影响测量不确定度的因素以及各项测量不确定度分量评定,人员、设备、材料、方法、环境都是影响测量不确定的因素。  相似文献   

19.
水泥水化热是中、低热水泥和核电工程用水泥的一项关键的技术指标。全球范围内测定水泥水化热的方法有溶解法、直接法/半绝热法、等温传导量热法三种。本文总结了中、美、欧相关方法标准,对其测试原理、仪器设备、试验过程等方面进行了比对,并对其在领域的应用做了简单的概括。  相似文献   

20.
Conclusions It is significant that the purification on a single passage of viscose through porous ceramic corresponds to the result of a two-stage filtration of it in industrial filter-presses with standard fillings.Kiev Combine. Kiev Technological Institute of Light Industry. Translated from Khimicheskie Volokna, No. 3, pp. 20–22, May–June, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号