首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The author presents an overview of fundamental considerations that guide and motivate research in this area. He explores the relationship between the bandwidth of the fiber, the available power and the loss in various network designs, and the throughput of networks as limited by the medium-access techniques and control mechanisms. He discusses two approaches to opening up the bottleneck that seem particularly promising. The first, multihop, uses a novel network architecture to achieve high capacity with existing devices; the second, wavelength division multiple access (WDMA), emphasizes new devices in a relatively conventional architecture. Noting that the primary disadvantage of the bus topology, poor energy efficiency, could be overcome with a suitable optical amplifier to compensate for the high signal attenuation in the network, the author discusses one of the most promising candidates, the traveling-wave semiconductor amplifier. He also discusses medium-access considerations  相似文献   

2.
The optimization problem of rearrangeable multihop lightwave networks is considered. The authors formulate the flow and wavelength assignment problem, when minimizing the maximum flow in the network, as a mixed integer optimization problem subject to linear constraints. The problem is decomposed into two independent subproblems, the wavelength assignment (or connectivity problem) and the flow assignment (or routing problem). A simple heuristic provides a meaningful formulation to the connectivity problem, in a form similar to a transportation problem. An algorithm is then proposed which finds a heuristic initial logical connectivity diagram and the corresponding routing, and then iterates from that solution by applying branch-exchange operations to the connectivity diagram. The algorithm was tested on illustrative traffic matrices for an 8 node network with two transmitters and two receivers per node, and an improvement in achievable throughput over the Perfect Shuffle interconnection pattern was shown in all cases  相似文献   

3.
Optical components for WDM lightwave networks   总被引:20,自引:0,他引:20  
Recently, there has been growing interest in developing optical fiber networks to support the increasing bandwidth demands of multimedia applications, such as video conferencing and World Wide Web browsing. One technique for accessing the huge bandwidth available in an optical fiber is wavelength-division multiplexing (WDM). Under WDM, the optical fiber bandwidth is divided into a number of nonoverlapping wavelength bands, each of which may be accessed at peak electronic rates by an end user. By utilizing WDM in optical networks, we can achieve link capacities on the order of 50 THz. The success of WDM networks depends heavily on the available optical device technology. This paper is intended as a tutorial on some of the optical device issues in WDM networks. It discusses the basic principles of optical transmission in fiber and reviews the current state of the art in optical device technology. It introduces some of the basic components in WDM networks, discusses various implementations of these components, and provides insights into their capabilities and limitations. Then, this paper demonstrates how various optical components can be incorporated into WDM optical networks for both local and wide-area applications. Finally, the paper provides a brief review of experimental WDM networks that have been implemented  相似文献   

4.
In this paper we present a new approach to the design of multihop lightwave networks with connectivity patterns that can be dynamically reconfigured. We introduce a practical algorithm that efficiently reconfigures the connectivity diagram by reassigning wavelengths to best fit the current traffic pattern. A newly developed stochastic optimization algorithm is used to obtain the mapping of a regular structure into a WDM star, while optimizing the system performance measures. The optimization tool is generated and can be used with any objective function which is a function of the traffic patterns, the system control and the system configuration. The results show that this is a practical tool and the resulting structures have a superior system performance  相似文献   

5.
Multiwavelength lightwave networks for computer communication   总被引:1,自引:0,他引:1  
The different approaches being considered to build high-capacity lightwave networks are described. Two kinds of lightwave network architectures are examined: broadcast-and-select networks and wavelength-routing networks. A comparison of the two shows that broadcast-and-select networks may be more suitable for local area networks (LANs) and metropolitan area networks (MANs), while wavelength-routing networks are suitable for wide area networks (WANs). The overall network may then be a combination of broadcast subnets interconnected by a point-to-point wavelength-routing network  相似文献   

6.
Subcarrier multiplexing for multiple-access lightwave networks   总被引:1,自引:0,他引:1  
This paper describes the applicability of subcarrier multiplexing to lightwave multiple-access networks. It is shown how currently available microwave and lightwave components can be used, by using subcarrier multiplexing, to provide high-capacity networks. For example, the proposed multiple-access network can support 1024 users at a continuous bit rate of 1.5 Mbit/s, per user.  相似文献   

7.
The unique systems opportunities offered by, and the unique systems constraints imposed by, lightwave technology as it applies to the field of distributed packet networks are examined. Single-channel and star topology approaches are first considered. Terabit-capacity lightwave networks are discussed, covering both wavelength-division and time-division multiplexing. Multichannel multihop lightwave networks are then considered, and a particular implementation, the ShuffleNet, is described, and its performance, as well as some simple addressing and routing schemes, is discussed  相似文献   

8.
A number of optical signal processing functions that might be potentially important for future lightwave communication networks are described. An optical network with a distribution capacity of 100 HDTV channels is considered along with how such a network can be implemented using the following functional subsystems: frequency converters; transmitter banks; modified (wavelength division multiplexing) WDM demultiplexers; and tunable optical receivers. Discussed are the key network-level issues: the power budget, the channel separation, and the overall rationale for selection of multiplexing techniques. A hardware implementation of the functional subsystems using three basic building blocks-tunable amplifiers/filters, phase locked loops, and comb generators-is discussed  相似文献   

9.
10.
11.
The amount of fiber required, propagation delay, and length of the longest link are significant design constraints in spatially large networks. This paper examines these characteristics from the viewpoint of growth and compares basic networks with hierarchical ones in terms of these characteristics. Results show that, when considering growth from three nodes, a star network randomly placed with a uniform distribution uses less fiber than a dual ring until there are 57 nodes. As the networks become large, the star has the smallest propagation delay and the dual ring uses the least amount of fiber. A two-level network having a star on the upper level and dual rings on the lower network level performs well in both categories by using 1.38 times as much fiber as the dual ring and having 1.65 times the propagation delay of a star as the number of nodes becomes large  相似文献   

12.
Some of today's telecommunications networks have the ability to superimpose some form of logical connectivity, or virtual topology, on top of the underlying physical infrastructure. According to the degree of independence between the logical connectivity and the physical topology, the network can dynamically adapt its virtual topology to track changing traffic conditions, and cope with failure of network equipment. This is particularly true for lightwave networks, where a logical connection diagram is achieved by assignment of transmitting and receiving wavelengths to the network stations that tap into, and communicate over, an infrastructure of fiber glass. Use of tunable transmitters and/or receivers allow the logical connectivity to be optimized to prevailing traffic conditions. With rearrangeability having thus emerged as a powerful network attribute, this paper discusses the reconfiguration phase which is the transition between the current logical connection diagram and a target diagram. We consider here an approach where the network reaches some target connectivity graph through a sequence of intermediate connection diagrams, so that two successive diagrams differ by a single branch-exchange operation. This is an attempt at logically reconfiguring the network in a way that is minimally disruptive to the traffic. We propose and compare three polynomial-time algorithms that search for “short” sequences of branch-exchange operations, so as to minimize the overall reconfiguration time. For networks made of up to 40 stations, theoretical and simulation results show that, when a randomly selected diagram is to be changed to another randomly chosen diagram, the average number of branch-exchange operations required grows linearly with the size of the network  相似文献   

13.
Recent reference clock distribution technologies are reviewed. Performance concepts and specification methodologies for synchronization system designs are then summarized. The focus is on the common master-slave synchronization designs, generally consisting of three subsystems: the primary clock supply, the slave clock supply, and the clock distribution system overlaid on the digital network. Network synchronization performance is specified with relative clock frequency stability and accuracy of the corresponding reference clock. An overview is also given of clock and jitter and wander specification methodologies discussed in CCITT  相似文献   

14.
We describe a broad-band lightwave synthesized frequency sweeper (LSFS) that uses synchronous filtering. We control the center frequency of the bandpass filter (BPF) in the LSFS so that it tracks the frequency of the circulating pulse. In the first half of this paper, we numerically simulate the accumulation of amplified spontaneous emission (ASE) noise in the LSFS and confirm the effectiveness of synchronous filtering in suppressing the noise. We show that the frequency sweep span can be enlarged to cover the erbium-doped fiber amplifier gain bandwidth completely if ideal synchronous filtering is realized. We also describe the way in which the fluctuation of the BPF center frequency severely limits the number of pulse circulations and we estimate the accuracy required for the BPF center frequency control. In the second half, we report our experimental results. We confirmed the completion of more than 10 000 pulse circulations, which corresponded to a frequency sweep span of >1.2 THz. We also estimated the accuracy of the BPF center frequency control experimentally. As a result, the relationship between the accuracy and the number of pulse circulations was in good agreement with that obtained in the simulation.  相似文献   

15.
The emergence of practical fiber-amplifier chains has swiftly raised the prospect of transparent lightwave networks, in which signals travel from source to destination through a sequence of intermediate nodes without optoelectronic conversion. When such networks employ multiple wavelengths, however, some of the most substantial new research challenges are those posed by the amplifier chains themselves. Such networks suffer from accumulating interchannel power spread, from sensitivity to interamplifier loss variations, and from transient cross saturation, as the network undergoes reconfiguration. All of these difficulties effectively vanish in a chain of saturated lightwave amplifiers whose per-channel gains are decoupled by, e.g., inhomogeneous broadening. Unlike conventional, homogeneously broadened systems, saturated fiber-amplifier chains with decoupled gain dynamics provide automatic channel-by-channel power regulation, tolerance to interamplifier loss variations, and immunity to transient cross saturation. Thus, if amplifiers with such decoupled gain dynamics can be implemented in a practical way, they promise to solve-in a single stroke-several of the most substantial technological challenges facing transparent multiwavelength lightwave networks  相似文献   

16.
Applications for subcarrier multiplexing include a variety of analog and digital lightwave transmission systems. An overview of the requirements and capabilities of these systems is presented by describing specific examples of the most popular system types. These examples include multiuser interactive local area networks and multichannel digital, FM, and AM-VSB (vestigal sideband) video distribution systems. Limitations imposed on each by the linearity of directly or externally modulated sources, receiver noise, and relative-intensity noise are discussed  相似文献   

17.
We investigated the propagation losses and the characteristic impedances ZL of coplanar waveguides (CPWs) and microstrip lines (MSLs) on a planar lightwave circuit (PLC)-platform formed on a silica/silicon substrate. The loss of the CPWs was 2.7 dB/cm at 10 GHz on the PLC-platform with 30 μm thick silica layer. Thus, a cm-order circuit of this CPW is difficult to fabricate in the 10 Gb/s module. This is because the silicon substrate has a large loss tangent (tan δ). On the other hand, the loss of the MSLs, where a ground plane shielded the high loss silicon substrate, could be improved to 0.9 dB/cm at 10 GHz with 30 μm thick polyimide. These lower loss MSLs on a PLC-platform can be applied to module operation at 10 Gb/s. Furthermore they have the advantage that they are suitable for application to array device circuits or circuits in a module where several devices are integrated because unlike CPWs the ground planes are not divided by signal lines or DC bias lines. The structure of CPWs and MSLs on a PLC-platform with a ZL of 50 Ω was also studied in detail  相似文献   

18.
The impact of finite intermediate frequency (IF) on the performance of heterodyne ASK lightwave systems is examined and quantified in the presence of laser phase noise and shot noise. For negligible linewidths, it is shown that certain finite choices of IF (R b,3Rb/2,2Rb,5Rb/2, etc.) lead to the same ideal bit-error-rate (BER) performance as infinite choices of IF. Results indicate that for negligible linewidths the worst case sensitivity penalty is 0.9 dB for proper heterodyne detection and occurs when fIF=1.25 Rb. For nonnegligible linewidths (e.g., when ΔνT⩾0.04) the sensitivity penalty is always less than 0.9 dB for finite choices of IF. The analysis presented does lead to a closed-form signal-to-noise ratio (SNR) expression at the decision gate of the receiver which can readily be used for BER and sensitivity penalty computations. The SNR expression provided includes all the key system parameters of interest such as system bit rate (Rb), the peak IF SNR (ξ), laser linewidth (Δν), and the IF filter expansion factor (α). The findings of this work suggest that the number of channels in a multichannel heterodyne ASK lightwave system can be increased substantially by properly choosing a small value for the IF at the expense of a small penalty <1 dB. On the negative side, IF frequency stabilization becomes a more critical requirement in multichannel systems employing small values of IF  相似文献   

19.
Mukherjee  B. 《IEEE network》1992,6(3):12-27
An overview of emerging all-optical networks is given. The characteristics and alternative architectures for single-hop systems are discussed. The characteristics of lightwave technology that facilitate the design of wavelength-division-multiplexing (WDM) networks are reviewed, and it is explained how WDM local networks can be built based on the single-hop and multihop approaches. Various categories of single-hop systems are discussed: experimental systems, systems based on no pretransmission coordination, and systems based on pretransmission coordination, which also require a separate control channel. A simple classification for single-hop systems is provided  相似文献   

20.
Mukherjee  B. 《IEEE network》1992,6(4):20-32
For pt.I see ibid., vol.6, no.3, p.12-27, 1992. A survey of wavelength-division-multiplexing (WDM)-based local lightwave networks is presented. The general characteristics of multihop systems are discussed, and various multihop approaches are reviewed. The construction of optimal structures based on minimizing the maximum link flow and optimizations based on minimization of the mean network packet delay are also reviewed. Regular topologies that have been studied as candidates for multihop lightwave networks, including the perfect shuffle, the de Bruijn graph, the toroid, and the hypercube, are discussed. Near-optimal node placement algorithms and shared-channel multihop systems are also discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号