首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
瓦斯爆炸运动火焰生成压力波的数值模拟   总被引:1,自引:0,他引:1  
从三维N-S方程出发,用TVD格式,对瓦斯爆炸过程中火焰产生压力波的过程进行了数值模拟,在此基础上,模拟了氢氧燃烧驱动的破膜过程以及破膜前后压缩波、稀疏波对火焰阵面的影响,同时,也研究了瓦斯爆炸过程中,压力波、火焰与障碍物的相互作用,数值模拟结果与理论分析吻合较好,从而进一步验证了该程序能处理含有化学反应和复杂管道的预混可燃气体爆炸问题。  相似文献   

2.
壁面粗糙度对瓦斯爆炸火焰波传播的影响   总被引:2,自引:0,他引:2  
在实验研究的基础上,分析了壁面粗糙度对瓦斯爆炸过程中火焰传播规律的重要影响.研究结果表明,壁面粗糙度对瓦斯爆炸过程的影响很大,相比光滑管道,粗糙管的火焰速度大幅度提高;对于管道终端闭口系统和开口系统的瓦斯爆炸过程,壁面粗糙度对两种系统的影响规律是一致的,影响程度比较接近.基于壁面粗糙度对瓦斯爆炸影响的实验结论,从理论上分析了壁面粗糙度对高速传播的火焰区的影响,并对实验现象做出了合理解释.因此,在矿井开拓中,应尽可能减小巷道壁面的粗糙度.研究结果对指导现场如何防治瓦斯爆炸,减轻瓦斯爆炸的威力具有重要作用.  相似文献   

3.
为揭示瓦斯爆炸与沉积煤尘耦合二次爆炸中瓦斯火焰的传播特性,利用瓦斯煤尘管道爆炸实验系统,测试爆炸火焰传播与冲击波诱导沉积煤尘扬起二次爆炸的关系。实验结果表明:瓦斯爆炸诱导煤尘二次爆炸的关键在于瓦斯爆炸火焰的传播速度和距离,爆炸冲击波先行激起沉积煤尘,而后与到达的爆炸火焰耦合形成二次爆炸;瓦斯浓度一定时,爆炸火焰传播距离取决于瓦斯聚集长度,一般为原聚集长度的3~5倍,化学当量瓦斯爆炸火焰传播速度最快;一定条件下,浓度不同而化学当量接近9.5%的瓦斯爆炸峰值压力大、火焰传播快,极易诱导煤尘参与二次爆炸。研究结论可为煤矿瓦斯爆炸诱导煤尘二次爆炸提供隔爆、抑爆的理论和技术支持。  相似文献   

4.
通过高速纹影图像从细观角度详细研究了不同传播条件下瓦斯爆炸火焰前锋的细微结构.实验及理论分析表明,瓦斯爆炸火焰有很好的分形特征.瓦斯爆炸火焰分形维数直接反应了火焰前锋皱折对火焰传播的影响.计算出的分形维数是衡量湍流火焰传播速度以及爆炸强度的有效参数.  相似文献   

5.
多孔泡沫金属研究现状及分析   总被引:9,自引:0,他引:9  
多孔泡沫金属是一种新型多用途材料,在一般工业领域,特别是高技术领域受到越来越广泛的重视,为此近年来已引起了国内外研究者的研究兴趣,笔者对多孔泡沫金属的研究现状进行了归纳和分析,提出了现存的问题和今后研究的几点建议,以求拓宽多孔泡沫金属的研究领域及在国民经济中的应用范围。  相似文献   

6.
瓦斯爆炸传播火焰高内聚力特性的试验研究   总被引:5,自引:0,他引:5  
采用高速摄影法及通过对爆炸反应区内不同部位温度的测量,对瓦斯爆炸传播火焰的特性进行了试验研究。研究发现,瓦斯爆炸产生的向前传播的火焰沿管道横断面分布不均匀,反应区内主要发光体沿管道底部向前传播。该发光体在低温下具有较高的内聚力,高温时容易瓦解。在瓦斯爆炸反应区内,中间产物的成分沿管道横断面分布也不均匀--管道中、上部是发光较弱的气体产物,放热量较大;而下部是亮度较高的等离子体,放热量较小。当瓦斯爆炸温度达到最大值以后,等离子体的内聚力急剧下降,等离子体爆发,爆炸中间产物在管道横截面内均匀分布。  相似文献   

7.
受限空间瓦斯爆炸火焰与毒气传播研究   总被引:1,自引:0,他引:1  
为揭示瓦斯爆炸过程中火焰、毒气及压力三者间相互关系,采用一端封闭的爆炸试验装置,通过改变瓦斯聚集长度和点火强度,研究了瓦斯爆轰及爆燃状态下火焰、毒气及压力传播变化规律.结果表明,管道内瓦斯爆燃状态下火焰的传播速度远小于爆轰状态下的传播速度,变化趋势呈线性;瓦斯爆炸火焰传播速度的大小直接影响爆轰的形成以及爆炸强度和爆炸传播距离;爆燃状态下火焰和毒气传播的距离基本相当,均为原始瓦斯聚集总长度的2倍左右;爆轰状态下火焰和毒气传播的距离基本相当,均大于原始瓦斯聚集长度,但传播距离不确定.  相似文献   

8.
湍流的诱导及对瓦斯爆炸火焰传播的作用   总被引:14,自引:2,他引:14  
对巷道面积突变和巷道分叉对瓦斯爆炸过程中火焰传播速度的影响进行了试验研究。并利用加速环研究了巷道支架对瓦斯爆炸传播规律的影响,在此基础上对湍流的形成过程进行了理论分析。研究结果表明,管路分叉,面积突变对瓦斯爆炸过程中火焰传播规律有重要影响,导致产生附加湍流,使瓦斯爆炸过程中火焰的传播速度迅速增大;在管道内装加速环,将使瓦斯爆炸过程中湍流度加剧,火焰的传播速度更大,激波生成的位置。最大点位置前移。强度增大,研究结果对指导现场防治瓦斯爆炸和减轻瓦斯爆炸的威力具有重要作用。  相似文献   

9.
充满生机的新型功能材料——泡沫金属   总被引:4,自引:0,他引:4  
  相似文献   

10.
设计了小尺度瓦斯爆炸实验系统,以甲烷模拟矿井瓦斯,进行了瓦斯爆炸实验;讨论了瓦斯爆炸感应期的概念,以热爆炸理论和链式反应理论对爆炸感应期的描述为基础,结合实验得出瓦斯爆炸初期可见光传播规律,将感应期分为瓦斯燃烧感应期和瓦斯爆炸感应期;以瓦斯爆炸可见光前沿传播速度达到起始速度的e~m倍为判断瓦斯由燃烧状态过渡到爆炸状态的判据,得出确定瓦斯爆炸感应期的方法.结果表明:瓦斯燃烧感应期和爆炸感应期与瓦斯浓度近似呈线性关系,且在火源能量比较高的情况下表现出瓦斯浓度对瓦斯燃烧感应期和爆炸感应期影响不大.  相似文献   

11.
In order to suppress the harm of gas explosion, the current study researched on the body of vacuum chamber. The previous studies verified that it could obviously lower the explosion overpressure by reasonably arranging vacuum chamber on pipe. That is to say, the vacuum chamber has the effect of absorbing wave and energy. To further deeply analyze the vacuum chamber suppressing gas explosion, this research designed the L-type pipe of gas explosion, and compared the experimental results of gas explosion with vacuum chamber and without vacuum chamber. Besides, using the gas chromatograph, this study also investigated the gas compositions in the pipe before and after explosion. The results show that: (1) without vacuum chamber, the maximum value of explosion overpressure is 0.22 MPa, with 60 ms duration, and after explosion, the concentration of oxygen drops to 12.07%, but the concentration of carbon monoxide increases to 4392.3 × 10?6, and the concentration of carbon dioxide goes up to 7.848%, which can make the persons in danger suffocate and die; (2) with vacuum chamber, explosion overpressure drops to 0.18 MPa, with 20 ms duration or less, and after explosion, the concentration of oxygen still remains 12.07%, but the concentration of methane is 7.83%, however the concentration of carbon monoxide is only 727.24 × 10?6, and the concentration of carbon dioxide is only 1.219%, at the this moment the concentration ratio of toxic gas drops by more than 83% in comparison to be that without vacuum chamber. Consequently, the vacuum chamber can guarantee that most methane does not take part in chemical reaction, and timely quenches the deflagration reaction of gas and oxygen. Because of the two points mentioned above, it reduces the explosion energy, and lowers that the overpressure of blast wave impacts and damages on the persons and facilities, and also decreases the consumption of oxygen and the production of the toxic gas. Therefore, it is safe to conclude that the vacuum chamber not only absorbs wave and energy, but also prevents and suppresses explosion.  相似文献   

12.
A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code,Young’s technique was employed to track the interface between the explosion products and air,and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct,for point initiation,the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall,multi-peak values appear on pressure—time curve,and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct,explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products,and indicate that the ignition model and multi-material interface treatment method are feasible.  相似文献   

13.
为了研究障碍物诱导湍流火焰特性,基于150 mm×150 mm×500 mm的小尺度爆炸腔体,在三个障碍物交错放置的条件下,采用预混燃烧模型对瓦斯爆炸过程进行大涡模拟。基于模拟结果,分析了瓦斯爆炸过程中火焰结构、未燃气体流动迹线以及火焰与未燃气体漩涡耦合规律。结果发现:小尺度条件下,障碍物诱导火焰形变,增大火焰面积,提高燃烧速率;在障碍物扰动作用下,未燃预混气体在障碍物形成漩涡,且漩涡尺寸及强度逐渐增大;未燃预混气体漩涡将爆炸火焰卷入其中,形成湍流火焰。  相似文献   

14.
瓦斯爆炸火焰和冲击波在并联巷网的传播特征   总被引:1,自引:0,他引:1  
为了研究瓦斯爆炸在并联巷网内的传播特征,利用并联管道系统模拟爆炸在实际巷道内的传播特征.结果表明:爆源点在掘进头时,并联管道两侧的火焰传播速度Sf和爆炸超压值△Pmax接近,火焰和冲击波叠加后,爆炸强度增加,△Pmax从0.38 MPa突跃到0.46 MPa.爆源点在工作面时,爆炸向邻近掘进头传播时测得的火焰速度和爆炸超压缓慢增大,而向较远的封闭端传播时△Pmax的值一直增大,而火焰传播分3个不同的区段;爆炸向邻近工作面传播时,在汇聚点附近测得的爆炸超压(0.44 MPa)明显高于两侧的超压值(0.39和0.38 MPa),但火焰传播速度会降低.煤矿瓦斯爆炸叠加地点附近是爆炸破坏较严重区域,故是设备和人员防护的重点区域.  相似文献   

15.
文章结合PPG芜湖厂防爆紫外火焰探测器的安装工程实例,探讨了防爆紫外火焰探测器在甲类化工厂房及高危行业的应用。  相似文献   

16.
The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called “plateau region”. The measured extinguishing mass fractions of the agents were: (16.7 ± 0.6)% for H2O, (15.9 ± 0.6)% for CO2, and (31.9 ± 0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) developed by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the suppression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner. Supported by the China NKBRSF project (Grant No. 2001CB409600)  相似文献   

17.
随着天然气使用的越来越普及,燃气爆炸在国内外时有发生且造成人员伤亡和财产损失.经过网上收集和亲临现场收集的资料,文中列举了国内一些典型的爆炸事故.结合爆炸案例及相关文献,指出了燃气爆炸引起的结构破坏特点及一些防治对策,重点对砌体结构构造柱和圈梁提出了一些建议,希望能够形成弱框架体系,形成砌体结构的第二道防线,防止砌体结构的连续倒塌.  相似文献   

18.
大尺度管道爆炸火焰速度计算模型   总被引:1,自引:0,他引:1  
通过理论分析和实验方法研究了管道内爆炸火焰速度,旨在为预测和评估爆燃火焰速度提供一种基于理论和实验的半经验计算方法.研究表明,火焰速度可以简化为湍流燃烧速度和热膨胀速度叠加的结果,推导出利用压力计算湍流燃烧速度和热膨胀速度的模型,并提出了利用压力、层流燃烧速度、湍流燃烧速度和热膨胀速度计算火焰速度的方法.对贫燃(φ=0.967)和富燃(φ=1.21、1.45)预混气体爆炸实验和计算分析表明,压力沿长径比增大方向呈线性增大;层流燃烧速度以线性关系正比于压力变化,接近化学当量比情况下的变化速率较大,φ=1.21条件下的层流燃烧速度值最大;压力变化和层流燃烧速度增大对湍流燃烧速度的影响不明显,对热膨胀速度的影响显著;压力和层流燃烧速度不是湍流燃烧速度的决定性因素而是热膨胀速度的决定性因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号