共查询到18条相似文献,搜索用时 93 毫秒
1.
C/C复合材料抗烧蚀TaC涂层的制备 总被引:17,自引:0,他引:17
报道1种制备C/C复合材料抗烧蚀TaC涂层的新技术。用红外光谱、XRD及SEM分析和表征醇基钽膜,用XRD和SEM分析和表征TaC涂层。制备出的醇基钽是非晶态结构,在C/C复合材料上将这种凝胶铺展形成致密的多层膜。在石墨化炉中多层膜被转化为TaC涂层。在1200℃时,形成的涂层中含有TaC和Ta2O5。高于1400℃时涂层中只有TaC存在。1600℃时所形成的涂层是1种连续致密的层状结构,1400℃时所形成的涂层是1种多微孔的网状结构。 相似文献
2.
采用化学气相反应法在C/C复合材料表面制备抗氧化SiC涂层,借助X射线衍射仪、扫描电镜及能谱等分析手段,研究涂层的结构;通过氧乙炔焰烧蚀试验考察SiC涂层对C/C复合材料高温耐烧蚀性能影响。结果表明:SiC涂层可明显提高C/C复合材料的高温短时耐烧蚀性能,经过20 s的高温氧乙炔焰烧蚀后,C/C复合材料试样的线烧蚀率和质量烧蚀率分别为13μm/s和6.6 mg/s,SiC涂层试样的线烧蚀率和质量烧蚀率分别为22μm/s和0.5 mg/s;在烧蚀中心区,涂层试样的烧蚀以升华分解为主,同时还伴有氧化烧蚀和微区机械剥蚀;在烧蚀过渡区,涂层的烧蚀机制以热氧化和燃气冲刷为主;而在烧蚀边缘区,涂层的烧蚀则主要表现为弱氧化烧蚀。 相似文献
3.
碳/碳(C/C)复合材料表面涂层在制备与服役过程中易出现裂纹、凹坑和孔洞等缺陷,使涂层失去完整性而极易导致防护失效,目前常用的解决方法为更换整体涂层,成本高、工艺复杂、耗时长,因此快速高效的涂层轻微缺陷修复技术是解决这一难题的有效途径。通过大气等离子焰流在C/C复合材料表面SiC-ZrB_(2)(SZ)涂层表面预先构造缺陷,采用异丙醇以及高温下性能稳定的含硼聚氮硅烷胶粘剂作为修复剂,以SiC-ZrB_(2)粉末作为改性填料,Al_(2)O_(3)作为烧结助剂,对SZ涂层缺陷进行修复,研究修复前后涂层的微观结构演变与烧蚀防护性能。结果表明:经等离子焰流烧蚀后,未修复的SZ涂层试样中心出现圆形凹坑缺陷,裸露出C/C复合材料基底;而对于修复后的涂层试样,修复剂热解生成的SiBCN陶瓷和改性陶瓷填料均匀覆盖于缺陷处,使涂层保持较高完整性,且在氧乙炔烧蚀下生成致密的SiO_(2)玻璃膜可有效阻挡氧扩散,保护C/C复合材料免受机械冲蚀;修复后的涂层试样在氧乙炔焰流下烧蚀60s后线烧蚀率与质量烧蚀率分别为0.65μm/s和-0.28mg/s,相比于未修复涂层试样分别降低了83.54%和129.47%,修复后涂层的抗烧蚀性能得到显著提升。 相似文献
4.
采用大气等离子喷涂技术(APS)在C/C复合材料表面制备了mullite/ZrB2-MoSi2双层抗烧蚀涂层。借助XRD、SEM、EDS等分析手段对涂层的组织结构进行研究;基于氧丙烯焰烧蚀试验考察ZrB2-MoSi2/mullite复合涂层对C/C复合材料高温耐烧蚀性能的影响。结果表明,在1700 °C和1800 °C的氧丙烯焰下烧蚀60 s,ZrB2-MoSi2/mullite涂层试样的质量烧蚀率分别为3.49×10-3 g/s与3.77×10-3 g/s。其与单层ZrB2-MoSi2涂层试样相比,ZrB2-MoSi2/mullite涂层试样展现了出色的抗烧蚀性能。烧蚀过程中形成的硅酸盐玻璃可以作为热障层而减少氧气的进一步渗透,并且还具有自我封填缺陷的能力,使ZrB2-MoSi2/mullite涂层表现较好的抗烧蚀性。 相似文献
5.
混杂C/C复合材料的烧蚀性能 总被引:3,自引:0,他引:3
利用等离子体火炬为高温热源,研究了混杂C/C复合材料的烧蚀性能.结果表明:随着烧蚀区域从火焰中心到边缘的变化,材料的烧蚀特性从中心区域的以热力学烧蚀为主向靠近边缘区域的以热化学烧蚀为主过渡;碳基体和碳纤维的抗热力学烧蚀性能相当,而碳纤维的抗热化学烧蚀特性则明显优于碳基体. 相似文献
6.
炭/炭(C/C)复合材料在高温含氧环境中易氧化烧蚀的问题影响了其在航空航天领域的应用,引入超高温陶瓷能有效地提高其超高温耐烧蚀性能。介绍和分析了化学气相渗透、先驱体浸渍裂解、反应熔渗等基体改性工艺及其优缺点;综述了近年来C/C复合材料基体改性提高其超高温抗烧蚀性能的最新研究进展;并评述了国内在提高C/C复合材料超高温抗烧蚀性能方面取得的一些成果;最后,提出了提高C/C复合材料超高温长时抗烧蚀性能的潜在发展方向。 相似文献
7.
C/C-Cu复合材料的烧蚀性能及烧蚀机理 总被引:2,自引:1,他引:2
采用真空熔渗技术制备新型C/C-Cu复合材料。采用氧-乙炔焰测试不同时间下C/C-Cu复合材料的抗烧蚀性能,利用XRD、SEM分析材料烧蚀后的物相组成及组织形貌,对C/C-Cu复合材料的烧蚀机理进行研究。结果表明:烧蚀时间对材料的烧蚀率有显著影响,随着时间的延长,材料的质量烧蚀率和线烧蚀率均呈上升趋势;烧蚀后复合材料表面生成氧化物相TiO2和Cu2O,原来的TiC相被TiO2相替代;C/C-Cu复合材料的烧蚀性能优于C/C复合材料的烧蚀性能;C/C-Cu复合材料的氧-乙炔焰烧蚀机制为热氧化烧蚀、热物理烧蚀(升华)和机械冲刷的综合作用。 相似文献
8.
目的提高C/C复合材料在超高温下的抗烧蚀性能。方法采用化学气相沉积法,在C/C复合材料表面制备SiC过渡层,然后以惰性气体保护等离子喷涂工艺在带有SiC过渡层的C/C材料表面制备W涂层,研究所制备的W-SiC-C/C复合材料的微观形貌与结构特征。以200 kW超大功率等离子焰流,考核W-SiC-C/C材料的抗烧蚀性能,并与无涂层防护的C/C材料进行对比分析。结果W涂层主要为层状的柱状晶结构。W涂层与SiC过渡层、过渡层与基体界面呈镶嵌结构,结合良好。SiC过渡层阻止了W、C元素相互迁移与反应。在驻点压力为4.5 MPa、温度约5000 K、热流密度为36 MW/m2的烧蚀条件下,当烧蚀时间小于10 s时,涂层对C/C材料起到了较好的保护作用,W涂层发生氧化烧蚀,基体未发现烧蚀,平均线烧蚀率为0.0523 mm/s;当烧蚀时间超过15 s后,涂层防护作用基本失效,基体C/C材料发生烧蚀现象。结论以W涂层、SiC过渡层为防护的C/C复合材料,能够适用于短时间超高温的烧蚀环境,如固体火箭发动机等。W涂层的熔融吸热、氧化耗氧以及SiC过渡层的氧化熔融缓解涂层热应力和氧扩散阻碍的联合作用,提高了C/C材料的抗烧蚀性能。 相似文献
9.
目的在C/C复合材料表面制备SiC涂层,提高C/C复合材料抗烧蚀性能。方法采用真空等离子喷涂技术在C/C复合材料表面制备纯Si涂层,在惰性气氛保护下对涂层高温热处理,纯Si涂层与C元素在高温下反应,原位生成SiC涂层。利用电弧加热器在不同烧蚀温度下,分别考核涂层的驻点烧蚀性能,并采用OM、SEM、EDS和XRD等对烧蚀前后的微观形貌和物相成分进行分析。结果在C/C复合材料表面制备了致密的SiC涂层,涂层中没有明显的裂纹存在,并在涂层下方产生较深的渗透区域,深度超过涂层厚度。制备的SiC涂层在1400℃下烧蚀50 s,涂层完整,具有良好的驻点烧蚀性能;在1600℃和1650℃下烧蚀50 s,涂层部分剥落,C/C复合材料基体产生烧蚀。结论 SiC涂层在高温下氧化成Si O2玻璃态膜,并覆盖在C/C复合材料表面,对基体具有良好的保护作用。随着烧蚀温度的提高,在超音速气流的冲刷下,由于热膨胀系数不匹配和SiC主动氧化的原因,涂层在烧蚀面边缘出现剥落,且剥落现象越来越严重,涂层失去对C/C基体的保护作用,烧蚀性能下降。 相似文献
10.
C/C复合材料ZrB2-SiC基陶瓷涂层制备及烧蚀性能研究 总被引:1,自引:0,他引:1
为提高C/C复合材料的抗烧蚀性能,采用两步刷涂一烧结法制备了ZrB2-SiC基陶瓷涂层。首先利用反应烧结制备ZrB2-SiC—ZrC过渡层,并在此基础上制备了ZrB2-20%SiC-5%Si3N4、ZrB2.15%SIC-20%MoSi2、ZrB2.15%SiC-20%TaC3种外涂层。利用XRD和扫描电镜研究了涂层的相组成和显微形貌,并采用氧乙炔焰烧蚀仪测试了涂层在2500℃、60S的抗烧蚀性能,探讨了涂层的高温烧蚀机理。结果表明:利用反应烧结制备的过渡层与基体结合紧密,且与外涂层无明显分层现象,起到了良好的过渡作用;由于Si,N4及MoSi2起到了烧结助剂作用,使ZrB2—20%SiC-5%Si,N4、ZrB2.15%SiC.20%MoSi2外涂层结构较为致密;ZrB2—20%SiC-5%si3N4、ZrB2—15%SiC~20%MoSi2涂层表现出了较好的抗烧蚀性能,其中ZrB2-20%SiC-5%Si3N4涂层线烧蚀率及质量烧蚀率分别为0.075mm/s、0.0081/s,ZrB2—15%SIC-20%MoSi2涂层线烧蚀率及质量烧蚀率分别为0.018mm/s、0.0064g/s,而ZrB2-15%SIC-20%TaC涂层由于结构较为松散,未能起到有效的氧化防护,导致涂层被烧穿。 相似文献
11.
12.
13.
炭/炭复合材料抗氧化抗热震铱涂层的研究进展 总被引:1,自引:0,他引:1
铱是航天领域1800 ℃以上炭/炭复合材料抗氧化抗热震涂层的首选材料。本文介绍了物理气相沉积、金属有机物化学气相沉积、熔盐电解沉积和双层辉光等离子沉积等4种主要制备铱涂层的方法,讨论了铱涂层与炭/炭复合材料基体之间过渡层的材料选择,总结了铱涂层的地面试车测试结果,分析了影响铱涂层寿命的因素,指出今后我国制备铱涂层的技术途径应采用熔盐电解沉积 (Electroformed Deposition, 简写为ED)、双层辉光等离子沉积 (Double-glow Plasma Deposition, 简写为DPD)方法。 相似文献
14.
为揭示具有良好高温(1300~1600 ℃)抗氧化性能的SiC-Glass涂层在中低温(500~1200 ℃)条件下的氧化防护性能,对SiC-Glass涂层碳/碳(C/C)复合材料的中低温氧化行为和机制进行了系统研究.结果表明,SiC-Glass涂层C/C复合材料的中低温氧化失重服从直线规律,但氧化机制存在温度依赖性,可分为2个区段:(1) 低温区(500~800 ℃),氧化失重速率与温度服从Arrhenius关系,氧化主要受控于氧在涂层缺陷内的扩散速率;(2) 在中温区(800~1200 ℃),氧化失重速率与温度不服从Arrhenius关系,氧化过程受氧在涂层缺陷中的扩散、SiC内涂层材料的氧化、Glass外涂层的部分熔融愈合等多种因素联合控制.对比分析表明,SiC-Glass涂层的中低温抗氧化性能不及其高温抗氧化性能优异.中低温下,涂层缺陷愈合不充分是导致这一现象的主要原因. 相似文献
15.
The thermal fatigue behavior of C/C composites coated with the SiC/MBAS glass (MoSi2 particle-containing boron aluminosilicate glass) coating, prepared by the two-step process of the pack cementation and procoating-sintering, was investigated in present paper. The experimental results indicated that the SiC/MBAS glass coating had an excellent thermal shock resistance in air at temperature up to 1873 K. During quick thermal cycle between 1873K and room temperature in air, the decrease of mass and mechanical ... 相似文献
16.
为提高碳/碳复合材料在高温下的氧化防护性能,利用包埋技术在碳/碳复合材料表面制备了TaSi2/SiC复合涂层。通过XRD、SEM 和 EDS分析了涂层的晶相结构和形貌特征,在1773 K的空气介质中对TaSi2/SiC涂层碳/碳复合材料进行等温氧化实验。结果表明,复合涂层厚度为200 μm,涂层中含有SiC, Si 和TaSi2相,并且涂层中没有明显裂纹出现。EDS结果显示外层TaSi2相可有效地填充内层SiC涂层的空隙,使得内外两层涂层之间没有明显的界面,等温氧化实验曲线说明TaSi2/SiC复合涂层在1773 K的空气介质中可有效保护碳/碳复合材料233 h。 相似文献
17.
采用包埋技术在C/C复合材料表面制备SiC/TaSi2抗氧化复合涂层,通过恒温氧化实验以及X射线衍射分析、扫描电镜观察,研究了包埋粉料中硅钽含量对复合涂层微观结构和高温抗氧化性能的影响.结果表明,随着硅钽比的减小,复合涂层的厚度先增大后减小;硅钽比为5:1所制备的复合涂层具有相对较大的厚度和较为致密的结构,且TaSi2含量相对较高,体现出优良的抗氧化和抗热震性能,在1500℃氧化241.8 h和经过18次1500℃←室温急冷急热后,带有该涂层的C/C试样失重仅为1.04%.穿透性裂纹的形成是长时间氧化后涂层失效的主要原因. 相似文献
18.
碳/碳复合材料具有优良的机械性能,是矫形外科和齿科领域一种很有潜力的医用生物材料.为了使它具有生物活性,本文通过一种施加超声波的新电沉积方法,声电沉积法,在其表面制备了磷酸钙生物活性陶瓷涂层.我们的实验结果表明,通过该工艺可获得致密、结合力改善的磷酸钙生物活性涂层,而且该工艺无需精确控制阴极表面产生的氢气.此外,本工艺还为具有优越力学性质的生物相容性导电材料表面制备生物活性磷酸钙涂层提供了一种新的选择. 相似文献