首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure has been developed to derive stress intensity factors (SIFs) for part-elliptical cracks based on an approximate crack surface displacement mode assumption for general configurations. The crack surface displacement mode is composed of available 2D crack surface displacement modes at intersections of the crack surface and boundaries, or in symmetry planes. Along with the obtained crack surface displacement mode, SIFs are determined by the magnitude of the crack surface displacement derived from energy release rate for virtual crack increments. The procedure was analytically verified with the exact solution for an embedded crack in an infinite body subjected to uniform crack surface pressure. Several examples show the obtained results in acceptable agreements with available solutions.  相似文献   

2.
This paper presents the application of weight function method for the calculation of stress intensity factors in embedded elliptical cracks under complex two-dimensional loading conditions. A new general mathematical form of point load weight function is proposed based on the properties of weight functions and the available weight functions for two-dimensional cracks. The existence of this general weight function form has simplified the determination of point load weight functions significantly. For an embedded elliptical crack of any aspect ratio, the unknown parameters in the general form can be determined from one reference stress intensity factor solution. This method was used to derive the weight functions for embedded elliptical cracks in an infinite body and in a semi-infinite body. The derived weight functions are then validated against available stress intensity factor solutions for several linear and non-linear stress distributions. The derived weight functions are particularly useful for the fatigue crack growth analysis of planer embedded cracks subjected to fluctuating non-linear stress fields resulting from surface treatment (shot peening), stress concentration or welding (residual stress).  相似文献   

3.
A numerical method for calculating weight functions for surface cracks in plates and shells is proposed. Thick-shell finite elements are used to create the discrete model of a body with a through-wall flaw. Line-spring elements transform the through-wall flaw into a surface crack. A quadratic line-spring element is presented. Weight functions for some semielliptical surface cracks in a plate have been calculated. The weight functions obtained may be used for computing stress intensity factors related to two-dimensional stress fields at the crack surface.  相似文献   

4.
Mechanical joints such as bolted, riveted or pinned joints are widely used to join the constituent parts of structural components. Reliable stress intensity factor analysis of arbitrary cracks in mechanical joints is required for the safety evaluation or fracture mechanics design. It has been reported that cracks in mechanical joints usually nucleate as the corner crack and grow as the elliptical arc through crack. The weight function method is a useful technique to calculate the stress intensity factor using the appropriate weight function for a cracked body and the stress field of an uncracked body. In this paper, the weight function method for the two surface points of elliptical arc through cracks in mechanical joints is developed to analyze the mixed-mode stress intensity factors. Unknown coefficients included in the weight function are determined using the reference stress intensity factors obtained from finite element analysis.  相似文献   

5.
The stress intensity factors for three-dimensional cruciform surface cracks in a semi-infinite body are numerically calculated by the body force method. Mindlin's point force solution is used for the derivation of basic equations to express the influence coefficient of triangular elements, into which the crack is divided. The interactions between crossed crack planes as well as contact between crack surfaces are considered in the iterative manner. Stress intensity factors for a cruciform median crack and a cruciform semicircular crack under a point force on the surface of a semi-infinite solid are analyzed. The possibility of growth of a median crack toward the free surface of the semi-infinite solid is discussed. A cruciform semicircular surface crack under remote uniaxial tension, or under combined tension and compression is also analyzed. The effect of contact of crack surfaces on stress intensity factors is discussed.  相似文献   

6.
In this paper, an effective numerical method for analyzing interacting multiple cracks and complex crack configurations in infinite linear elastic media is presented. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks, the original problem is divided into a homogeneous problem (the one without cracks) subjected to remote loads and a multiple-crack problem in an unloaded body with applied tractions on the crack surfaces. Thus, the results in terms of the stress intensity factors (SIFs) can be obtained by taking into account the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements proposed recently by the author. Test examples are included to illustrate that the method is very simple and effective for analyzing interacting multiple cracks and complex crack configurations in an infinite linear elastic media under remote uniform stresses. Specifically, analysis of perpendicular cracks under general in-plane loading is performed using the numerical approach and many numerical results are given in the form of tables.  相似文献   

7.
In this paper, the crack problems in the case of a cylindrical bar having a circumferential crack and a cylindrical bar having an infinite row of circumferential cracks under tension are analyzed by the body force method. The stress field for a periodic array of ring forces in an infinite body is used to solve the problems. The solution is obtained by superposing the stress fields of ring forces in order to satisfy a given boundary condition. The stress intensity factors are calculated for various geometrical conditions. The obtained values of stress intensity factor of a single circumferential crack are considered to be more reliable than the results of other paper's. As the crack becomes very shallow, the stress intensity factor of a row of circumferential cracks approaches the value corresponding to that of a row of edge cracks in a semi-infinite plate under tension. As the crack becomes very deep, it approaches the values corresponding to that of a single deep circumferential crack.  相似文献   

8.
The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by the boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack-tip element is derived. The numerical values of the thermal stress intensity factors for an interface Griffith crack in an infinite body are compared with the previous solutions. The thermal stress intensity factors for a symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material property. However, the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.  相似文献   

9.
This paper presents a numerical method to model a general system containing cracks and voids in an infinite elastic plate under remote cyclic loads. By extending Bueckner’s principle suited for a crack to a general system containing cracks and voids, the original problem is divided into a homogeneous problem (the one without cracks and voids) subjected to remote loads and a void-crack problem in an unloaded body with applied tractions on the surfaces of cracks and voids. Thus, the results in terms of the stress intensity factors can be calculated by considering the latter problem, which is analyzed easily by using the hybrid displacement discontinuity method (a boundary element method). Further, a fatigue growth technique of a mixed-mode crack is combined with the numerical approach to simulating a void–crack interaction problem under cyclic loads. Test examples are included to illustrate that the numerical method is very simple and effective for analyzing a void–crack interaction problem.  相似文献   

10.
The authors have developed a new line-spring boundary element method which couples the line-spring model with the boundary element method to deal with the problem of a surface cracked plate. However, the drawback of the line-spring model is that a reliable stress intensity factor could not be directly obtained near the free surface intersection. Therefore, the virtual crack extension technique is employed in a post-processor of the line-spring boundary element method to obtain the stress intensity factor at the crack front-free surface intersection. Theoretical analysis is described. Stress intensity factors for surface cracks are calculated to verify the proposed method. The interaction of two surface cracks is also investigated. The solutions obtained by the line-spring boundary element method show that the method proposed is efficient and reasonably accurate.  相似文献   

11.
Maximum stress intensity factors of a surface crack usually appear at the deepest point of the crack, or a certain point along crack front near the free surface depending on the aspect ratio of the crack. However, generally it has been difficult to obtain smooth distributions of stress intensity factors along the crack front accurately due to the effect of corner point singularity. It is known that the stress singularity at a corner point where the front of 3 D cracks intersect free surface is depend on Poisson's ratio and different from the one of ordinary crack. In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3-D semi-elliptical surface crack in a semi-infinite body under mixed mode loading. The body force method is used to formulate the problem as a system of singular integral equations with singularities of the form r −3 using the stress field induced by a force doublet in a semi-infinite body as fundamental solution. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately. Distributions of stress intensity factors are indicated in tables and figures with varying the elliptical shape and Poisson's ratio.  相似文献   

12.
The method of singular integral equations was applied to determine the stress intensity factors for a system of cracks emanating from the vertex of an infinite rounded V-notch subjected to symmetric loading. The numerical values were obtained for two cases—the case of a single crack and the case of a system of two cracks of equal length. The influence of the rounding radius of the vertex of the notch and its opening angle on the stress intensity factors at the crack tips was analyzed. The solution obtained as a result has a general nature—the stress intensity factors at the crack tip are expressed as a function of the V-notch stress intensity factor and, hence, this solution could be treated as an asymptotic relation for finite bodies with deep V-notches subjected to symmetric loads.  相似文献   

13.
Abstract

In this paper, the transient analysis of semi‐infinite propagating cracks in piezoelectric materials subjected to dynamic anti‐plane concentrated body force is investigated. The crack surface is assumed to be covered with an infinitesimally thin, perfectly conducting electrode that is grounded. In analyzing this problem, it has characteristic lengths and a direct attempt towards solving this problem by transform and Wiener‐Hopf techniques (Noble, 1958) is not applicable. In order to solve this problem, a new fundamental solution for propagating cracks in piezoelectric materials is first established and the transient response of the propagating crack is obtained by superposition of the fundamental solution in the Laplace transform domain. The fundamental solution to be used is the responses of applying exponentially distributed traction in the Laplace transform domain on the propagating crack surface. Taking into account the quasi‐static approximation, exact analytical transient solutions for the dynamic stress intensity factor and the dynamic electric displacement intensity factor are obtained by using the Cagniard‐de Hoop method (Cagnard, 1939; de Hoop, 1960) of Laplace inversion and are expressed in explicit forms. Numerical calculations of dynamic intensity factors are evaluated and the results are discussed in detail. The transient solutions for stationary cracks have been shown to approach the corresponding static values after the shear wave of the piezoelectric material has passed the crack tip.  相似文献   

14.
A formula is derived for determining dynamic stress intensity factors directly from crack mouth opening displacements in dynamic tear test specimen. The results obtained by the present estimation method for stationary as well as propagating cracks agree excellently with those directly obtained through a highly accurate moving-singularity finite element method. The present method can also be applied for other types of specimen which have a relatively short edge crack without any loading on the crack surface. The present simple estimation method should be of great value in the experimental measurement of dynamic stress-intensity factors for propagating cracks in (opaque) structural steel dynamic tear test specimens.  相似文献   

15.
This paper deals with such a kind of surface crack problem with a same depth (called a liked‐plane crack problem for short). Based on the previous investigations on an internal rectangular crack and a surface rectangular crack in an infinite solid in tension and the hybrid displacement discontinuity method, a numerical approach for the liked‐plane crack problem is presented. Numerical examples are given to illustrate the numerical approach is simple, yet accurate for calculating the stress intensity factors (SIFs) of the liked‐plane crack problem. Specifically, SIFs of a pair of cracks emanating from a surface square hole in an infinite body in tension are investigated in detail.  相似文献   

16.
Numerical methods for solving integral equations of an axisymmetric problem of torsion of an elastic space with cracks on the surface of revolution are suggested for the cases of cracks crossing the axis of symmetry and cracks that have no common points with this axis. We also present relations for calculating the stress intensity factors at crack tips. Numerical results are obtained for a conic or paraboloidal simply connected crack and for a doubly connected crack lying on a surface formed by the revolution of an arbitrarily oriented straight segment or a parabolic arc. The crack faces are either subjected to a constant load or free of any forces; the body is subjected to torsion at infinity.Karpenko Physico-Mechanical Institute, Ukrainian Academy of Sciences, L'viv. Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 29, No. 6, pp. 87–93, November–December, 1993.  相似文献   

17.
The problem of curvilinear cracks lying on a soft ferromagnetic solid subjected to a remote uniform magnetic induction is considered. With the complex variable technique, the general solutions of both the magnetic field quantities and the magnetoelastic stresses can be obtained. In order to illustrate the effect of magnetic induction, the solutions for the problem with one arc crack and two arc cracks are presented in a closed form. The stress intensity factors in the vicinity of crack tip and the crack opening condition are also derived. Considering the magnetic stress induced by an oblique magnetic field on the crack surface, one can find that the stress intensity factors of mode-I and mode-II are related to the incident angle of magnetic induction, the crack half angle and the magnetic susceptibility as displayed with figures. It is noticed that the present work is available even for a ferromagnetic material with low susceptibility. For the limiting case of the crack half angle in the one arc crack problem approaching to zero, the stress intensity factors are also provided and analytically compared with the existing ones of the straight crack problem.  相似文献   

18.
In this paper the stress intensity factors are discussed for an inclined elliptical crack near a bimaterial interface. The solution utilizes the body force method and requires Green’s functions for perfectly bonded semi-infinite bodies. The formulation leads to a system of hypersingular integral equation whose unknowns are three modes of crack opening displacements. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. Distributions of stress intensity factors are presented in tables and figures with varying the shape of crack, distance from the interface, and elastic modulus ratio. It is found that the inclined crack can be evaluated by the models of vertical and parallel cracks within the error of 24% even for the cracks very close to the interface.  相似文献   

19.
A method for studying brittle fracture in an infinite plate containing interacting cracks of complex shape under general loading conditions is developed and studied for accuracy and potential applications. This technique is based on superposition and dislocation theory and can be used to determine the full stress and displacement fields in a cracked body. In addition, stress intensity factors at both crack tips and wedges, created by crack kinking and branching, are calculated so that crack growth and initiation can be analyzed at these locations of possible crack propagation. Such information can then be used to study damage accumulation in structures containing a large number of interacting cracks.  相似文献   

20.
The hatches for inspecting are usually designed with elliptical holes in airplane structures, so computation of the stress intensity factor of three dimensional crack at elliptical holes is pivotal for damage tolerance analysis of these structures. In this paper, weight function is derived for a two dimensional through cracks at elliptical holes by applying a compounding method. Stress intensity factor formulas for an internal surface semi-elliptical crack in elliptical holes are obtained wing the three dimensional weight function method. Stress intensity factors for an internal surface semi-elliptical crack in elliptical holes under remote tension are computed. At the same time, research on how radius of curvature for elliptical holes affect stress intensity factors was conducted. Stress intensity factors decrease when radius of curvature increases. Some results and conclusions which are of practical value are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号