首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effect of metal cations in solution on the oxidation of methanol on the electrode surface of platinum is a neglected aspect to direct methanol fuel cell (DMFC). In this paper, a smooth platinum electrode absorbing metal cations as the working electrode was applied to investigate the methanol oxidation with the cyclic voltammetry (CV) in 1.0 mol L−1 H2SO4. From the analysis of experiment, it is found that the cations, Li+, Ce4+, Mn2+, Ni2+, Cu2+, have some negative effect on the catalytic oxidation of methanol on the surface of platinum. The degree of the effect from different cations was analyzed.  相似文献   

2.
In this article, incorporation of platinum nanoparticles (PtNPs) into chitosan-coated glassy carbon (GC) electrode for methanol oxidation is studied. Pt–chitosan nanocomposites are prepared and characterized by UV–vis spectroscopy, X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). Catalytic activity of GC–PtNPs–chitosan electrode for the electrooxidation of methanol is studied by cyclic voltammetry and chronoamperometry. The current density and potential of the methanol oxidation are affected by amount of platinum, methanol, sulfuric acid, and chitosan. The current density of the methanol oxidation at GC–PtNPs–chitosan electrode is measured in optimized conditions and compared with that obtained at the glassy carbon modified electrode by Pt with different polymers.  相似文献   

3.
氢钼青铜修饰铂电极对甲醇氧化的电催化作用   总被引:2,自引:0,他引:2  
利用循环伏安法研究了氢钼青铜在铂电极上的修饰作用和修饰铂电极在c(H2 SO4 ) =0 5mol/L溶液中对甲醇的催化作用。研究结果表明 :铂电极因钼酸盐的还原和钼青铜的氧化而得到修饰 ,低电位范围内修饰铂电极对甲醇的氧化有催化作用 ,催化氧化电流是未修饰电极上的1 6倍。酸性条件下 ,含高价态钼的钼青铜不稳定 ,会不断溶解对铂失去修饰作用 ,对甲醇的氧化效果与未修饰铂电极上的效果相同 ;而低电位时 ,钼青铜修饰铂电极则相对稳定  相似文献   

4.
用磷钼酸修饰甲醇燃料电池的铂电极   总被引:1,自引:0,他引:1  
近年来以杂多化合物为基础的催化体系受到广泛的关注.为了研究杂多酸与铂电极对甲醇电催化氧化的协同效应,通过循环伏安扫描法制备了磷钼酸(H3PMo12O40)修饰铂电极.通过循环伏安和计时电流法研究了该修饰电极对甲醇氧化的电催化活性和抗中间产物的毒化作用,并比较了该修饰电极与其单酸盐(Na2MoO4)修饰铂电极的性能,测试结果表明:磷钼酸修饰铂电极能够提高对甲醇氧化反应的催化活性,基本上同其单酸盐Na2MoO4修饰铂电极的催化活性相当,并且这种促进作用主要是由Mo原子价态变化引起的.同时计时电流曲线测试结果表明,该修饰电极具有一定的抗毒化作用,但不如钼酸钠好.  相似文献   

5.
甲醇在聚苯胺修饰铂钼共沉积电极上的催化氧化   总被引:1,自引:0,他引:1  
黄青丹  黄红良  林志勇  李伟善 《精细化工》2006,23(11):1108-1111,1117
用恒电位法和循环伏安法在铂电极上分别制备了聚苯胺修饰的分散氢钼青铜电极和分散铂电极,以及聚苯胺修饰的不同铂钼比例的铂与氢钼青铜共沉积电极。用循环伏安法研究了制备电极在c(H2SO4)=0.5mol/L水溶液中的电化学行为,以及对c(CH3OH)=0.1 mol/L的催化氧化行为。其中,分散氢钼青铜电极对甲醇无催化氧化的作用,铂与氢钼青铜共沉积电极对甲醇的催化氧化效果优于分散铂电极。铂-氢钼青铜共沉积电极对甲醇氧化的催化能力与共沉积铂钼的比例有关,当制备电极所用的溶液中n(氯铂酸)∶n(钼酸钠)=2∶1时,共沉积电极对甲醇的催化氧化活性最高,此时甲醇在共沉积电极上的氧化峰电流是单纯铂电极的2.632倍。  相似文献   

6.
The oxidation of methanol and C1 molecules at electrodes modified with polyaniline and particles of platinum and ruthenium has been studied in aqueous HClO4 electrolyte. The platinum and ruthenium particles were incorporated into the polyaniline film by electrochemical reduction. The activity for the oxidation of C1 molecules is higher for bimetallic electrodes than for polyaniline-coated electrodes modified with platinum alone. Indeed, a negative shift of more than 100 mV is observed as compared to the potential obtained with a polyaniline film modified by pure platinum. Moreover, the oxidation of methanol is faster and more complete on the Pt-Ru modified polyaniline electrode, since carbon dioxide is the main reaction product.  相似文献   

7.
Adsorption and electro-oxidation of methanol on smooth iridium and rhodium electrodes have been studied. The regularities obtained were compared with the results of previous measurements on smooth platinum. The adsorption of methanol on iridium has been established as characterized by regularities peculiar to a surface with an exponentially distributed inhomogenity of adsorption sites (Freundlich isotherm, linear change of the activation energy of adsorption with logarithm of surface coverage). The adsorption regularities for rhodium are more complex. The character of the isotherms on iridium and rhodium, as well as on platinum, does not depend on the nature of adsorbed neutral particles (methanol, hydrogen etc) and is apparently determined by the electrode surface properties. As follows from kinetic regularities (influence of potential, concentration and pH of solution, surface coverage) the rate-determining step of steady-state methanol electro-oxidation on iridium and rhodium is the oxidation of carbonaceous chemisorbed particles by adsorbed OH radicals.  相似文献   

8.
The electrochemical oxidation of ethylene glycol on platinum was investigated and compared with that of methanol in alkaline solution by using various electrochemical and analytical measurements. Ethylene glycol showed much less significant electrode poisoning than methanol at low potential (400 mV). This phenomenon was clarified by analyzing the products of ethylene glycol oxidation. In ethylene glycol oxidation, partial oxidation to glycolate was much faster than complete oxidation to CO2. In addition, there were two paths for ethylene glycol oxidation: poisoning and non-poisoning paths. The poisoning path led to the production of C1 compounds and the non-poisoning path gave oxalate. The non-poisoning path prevented the formation of poisonous species on platinum.  相似文献   

9.
This work employs a novel technique in which laponite clay-modified gold electrodes are used as the anode for direct methanol fuel cells. The platinum/laponite clay (Pt/Clay) films on indium tin oxide electrode were characterized by using scanning electron microscope and energy-dispersive X-ray spectroscopy. Various contents of laponite clay (0.1, 0.5, 1.0, and 2.0?wt%) with constant platinum (Pt) catalyst content on modified gold electrodes were studied as an anode catalyst for methanol oxidation. The catalyst poisoning was observed as a function of time. The 1.0?wt% Pt/Clay-modified gold electrode shows the highest activity for methanol oxidation, 27.73?% higher than Pt only modified gold electrode at 2.5?min. The peak current of 1?% Pt/Clay-modified gold electrode is 3.50?% higher than the peak current of Pt only modified gold electrode at 57.5?min. The higher content of Pt/Clay-modified gold electrode shows strong resistance to catalyst poisoning. The Pt/Clay-modified gold electrode is a new and promising electrode for a direct methanol fuel cell and can replace existing commercial catalysts.  相似文献   

10.
用循环伏安法在玻碳电极上电聚合导电高分子聚苯胺用于附载Pt,提高了Pt的分散度。发现甲醇在Pt/PAN/GC电极和Pt/GC电极上均能自发解离出强吸附中间体CO,证实聚苯胺膜的存在有利于提高电极对甲醇的电催化氧化活性,CO在Pt/PAN/GC电极上的氧化峰电流明显高于Pt/GC电极。通过比较甲醇的电催化氧化活性可知,Pt/PAN/GC电极催化氧化甲醇的峰电流为58.68mA/cm^2和50.00mA/cm^2,是Pt/GC电极氧化峰电流的1.6倍和1.7倍。  相似文献   

11.
Irreversible oxidation of methanol on polycrystalline platinum leading to soluble products has been carried out by fast scan voltammetry, and the reaction has been studied under diffusion controlled process. The conventional analysis of current–potential data, viz. dependence of peak potential on scan rate and peak width measurements, resulted in the estimation of apparent diffusion coefficient of methanol and the anodic transfer coefficient of the electrode reaction. However, from the convolution potential sweep voltammetry, a more accurate and reliable kinetic data were obtained. Under the above conditions, methanol oxidation follows Butler–Volmer rate law with a linear variation of logarithmic heterogeneous rate constant with electrode potential. A constant apparent anodic transfer coefficient independent of electrode potential was observed pointing to the fact that the standard potential of the reaction cannot be determined from the voltammetric experiments. The experimental current–potential curve was compared with a theoretical voltammogram and further oxidation of products at the electrode surface has also been analyzed using limiting convolution current.  相似文献   

12.
Electro-oxidation of methanol has been investigated on activated, rough gold electrodes in alkaline solutions. The electrodes were activated by formation and decomposition of gold amalgam. The oxidation of methanol starts at potentials about 400 mV less positive as compared with smooth poly and single crystal gold electrodes and the oxidation current is much higher. For freshly prepared, activated gold electrodes the oxidation current is similar to that obtained on smooth platinum, however it diminishes with time. The formation of small crystallites, which could trap OH anions, seems to be the most important factor for this unusual catalytic activity. The dependence of the oxidation process on electrode topography is discussed.  相似文献   

13.
Methanol electro‐oxidation is investigated at graphite electrodes modified with various platinum and nickel nano‐particle deposits using cyclic voltammetry. The modified electrodes are prepared by the simultaneous electrodeposition of metals from their salt solutions using potentiostatic and galvanostatic techniques. They show enhanced catalytic activity towards methanol oxidation in KOH solution. The catalytic activity of platinum nano‐particles is found to be significantly affected by the presence of relatively small amounts of nickel deposits. A comparison is made between the electrocatalytic activity of Pt/C and (Pt‐Ni)/C electrodes. The results show that the methanol electro‐oxidation current increases with an increase in the nickel content. In particular, the highest catalytic activity is achieved for platinum to nickel deposits of 95%:5% (wt.‐%), in other cases the catalytic activity decreases. It is found that Ni enhances the catalytic activity of Pt by increasing the number of active sites, as well as through an electron donation process from Ni to Pt. This process takes place once the nickel hydroxide (Ni(OH)2)/nickel oxy‐hydroxide (NiOOH) transformation begins. The effect of the methanol concentration on the methanol oxidation reaction is investigated. The order of reaction, with respect to methanol, at the modified (Pt‐Ni)/C electrode is found to be 0.5.  相似文献   

14.
Hans Degn 《Electrochimica acta》2002,47(18):3017-3027
A continuously renewing platinum electrode is created by positioning two electrochemical cells symmetrically around a platinum ball so that opposite sides of the ball are pressed against gaskets situated in holes in the walls of the two cells. Thereby two opposite segments of the surface of the platinum ball are in contact with the electrolytes in the two cells and can be polarised independently with respect to the two electrolytes. When the ball is rotated the surface segment, which constitutes one electrode, is continuously being replaced by surface arriving from the segment, which constitutes the other electrode. By proper choice of electrolytes and potentials material deposited on the electrode surface in one cell may be released in the other cell. The effect is demonstrated with hydroxyl, sulfate and cupric ions. The transport of hydroxyl ions from one cell to the other is subject to anodic passivation caused by the formation of a surface layer of Pt-oxide. Continuous renewal of the catalytic activity of the platinum electrode due to continuous removal of inhibitory material is demonstrated with the electrooxidation of methanol. The oxidation of methanol is subject to anodic passivation caused by bound sulfate ions.  相似文献   

15.
采用循环伏安法制备聚苯胺(PAN)/聚砜(PSF)复合膜修饰电极,在其上电沉积铂粒子,制得载铂聚苯胺/聚砜复合膜修饰电极,用循环伏安法和交流阻抗法研究它对甲醇的电催化氧化行为。复合膜的化学组分用FTIR进行表征,复合膜内层载铂后的表面形态用SEM进行表征。结果表明,复合膜的内层(与工作电极接触的一面)是聚苯胺,外层(与溶液接触的一面)是聚砜,铂粒子在复合膜内层的多孔聚苯胺上均匀沉积,从而使载铂聚苯胺/聚砜复合膜修饰电极对甲醇有好的电催化氧化性能。  相似文献   

16.
The electrochemical behaviour of sulphur dioxide in sulphuric acid solutions at a platinum rde is characterized. Cycling the potential in these solutions between about ?0.10 and 1.2 V sce results in activation of the electrode so that diffusion-controlled SO2 oxidation currents can be observed in the double layer region of platinum. Without activation, SO2 oxidation proceeds noticeably only in the potenial region of surface oxide formation. Evidence is presented which indicates that activation results from formation of a catalytic layer of sulphur species. The catalytic activity of this layer decays with time in the course of SO2 oxidation. The formation of sulphur oxides through oxidation of adsorbed sulphur and the formation of platinum oxides complicate the voltammetric behaviour of the system.  相似文献   

17.
The electrochemical oxidation of 2,3- 2,4- and 2,5-diaminophenol, on platinum electrode, in acid medium was studied using cyclic voltammetry, in situ UV-vis and in situ FTIR spectroscopies. The spectroscopic data indicates that 2,4-diaminophenol suffers hydrolysis giving the formation of 2-amino-hydroquinone/2-amino-p-benzoquinone in solution. The oxidation mechanism of 2,5-diaminophenol is similar to the p-phenylenediamine giving 2-hydroxy-p-benzoquinoneimine and its hydrolysis product, 2-hydroxy-p-benzoquinone. The electrochemical results suggest that 2,3-diaminophenol generates a non-electroactive polymeric material on the electrode surface.  相似文献   

18.
Methanol oxidation at technical carbon based electrodes in 0.05 M H2SO4 has been investigated by cyclic voltammetry using online MS under the conditions of an acid methanol fuel cell (DMFC). 5% Pt on Norit BRX and 30% Pt/Ru (40/60) on Norit BRX were used as catalysts. It is shown that methanol oxidation at technical electrodes can be characterized by a combination of cyclic voltammetry and mass spectroscopy. The onset potentials and potential dependences of the methanol oxidation rate can be determined directly by monitoring the formation of CO2. Onset potentials of 0.5V and 0.25 V/RHE have been measured for Pt and Pt-Ru catalysts, respectively. The onset of methanol oxidation can be shifted to even more cathodic potentials (0.2V) if the Pt-Ru electrode reduces oxygen simultaneously. Carbon monoxide gas was also purged into the methanol containing electroyte during measurement in order to investigate the catalyst performance under more adverse conditions. C13-labelled methanol was used to distinguish between CO2. formed from methanol (m/e = 45) and CO-oxidation (m/e = 44). Without CO the use of C13-labelled methanol enabled a distinction between methanol oxidation and carbon corrosion. The methanol oxidation at the platinum catalyst is severely inhibited by the presence of CO, shifting its onset to 0.65 V/RHE. In contrast the performance of the Pt-Ru electrode is not seriously affected under these conditions. It is concluded that Pt-Ru is an excellent catalyst for a methanol anode in an acid methanol fuel cell (DMFC).  相似文献   

19.
In this work, synthesis of Ni nanoparticles was carried out successfully by water extract of Allium jesdianum as a biochemical reducing agent in the presence of montmorillonite clay (MMT) as a natural solid support for the first time. Then the electrochemical activity of the synthesized nanocomposite was investigated in methanol electrocatalytic oxidation. MMT with high cation exchange capacity and nano layer structure was exposed to ion exchange conditions in nickel solution. Then Ni2+ ion exchanged form was used in this process as a source of ions and also capping agent. Water extract of Allium jesdianum used as a reducing agent due to abundant availability of phenolic and flavonoid contents. The synthesized Ni/MMT nanocomposite was characterized using UV–Vis spectroscopy (UV–Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDX). The surface of prepared modified electrode has been characterized using SEM to evaluate the morphology, showing uniform dispersion of Ni nanoparticles with mean diameter of 12 to 20 nm. The modified carbon paste electrode was then used in methanol electrocatalytic oxidation reaction. Methanol oxidation on the proposed modified electrode surface occurs at 0.6 V and 0.3 V in alkaline and acidic medium respectively. Also, the results showed the better performance of modified electrode toward methanol electrocatalytic oxidation in comparison with carbon paste electrode that is modified by ion exchanged MMT. Charge transfer coefficients and apparent charge transfer rate constant for the modified electrode in the absence of methanol in alkaline medium were respectively found as: αa = 0.53, αc = 0.37 and ks = 1.6 × 10−1 s−1. Also, the average value of catalytic rate constant for the electrocatalytic oxidation of methanol by the prepared nano-catalyst was estimated to be about 0.9 L·mol-1·s-1 by chronoamperometry technique. The prepared electrode was also effective for electrocatalytic oxidation of ethanol and formaldehyde in alkaline medium.  相似文献   

20.
In this study, platinum particles were fabricated on flexible, transparent, single-walled carbon nanotube films without the addition of reducing or protecting agents using a facile and controllable electrochemical method. Spherical platinum particles (SPPs) were transformed into flower-like platinum particles (FPPs) by varying the applied potential, the pattern size of the photoresist polymer, and the deposition time. An analysis of the X-ray diffraction data revealed that the FPPs possessed a face centered cubic structure. The intensity ratio of (111) to (200) diffraction lines for the FPPs (2.15) was greater than that of the SPPs (1.44), indicating that the as-prepared FPPs were dominated by the lowest-energy (111) facets. The electrocatalytic activities of the synthesized particles with regard to methanol and formic acid oxidation were investigated. The FPPs exhibited higher catalytic performance for the electrochemical oxidation of methanol and formic acid than the SPPs. The high oxidation current of the FPP-based electrode was directly related to the morphologies of the platinum particles. The simple approach employed in this study will be useful for fabricating particles of other noble metals with different morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号