首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 234 毫秒
1.
通过镜下鉴定、扫描电镜分析、化学多元素分析和化学物相分析等多种手段对某钛磁铁矿进行了工艺矿物学研究, 并对影响选矿指标的主要因素进行了分析, 结果表明, 该矿石中的铁赋存状态较复杂, 钛磁铁矿为其主要存在形式, 常零星散布在脉石中, 部分与钛铁矿毗连镶嵌, 且普遍沿表面、边缘及裂隙发生假象赤铁矿化、绿泥石化及榍石化, 粒度较为细小, 由于氧化作用的影响, 部分与绿泥石、榍石等脉石矿物的镶嵌关系过于复杂, 将直接影响到铁精矿的产品质量。  相似文献   

2.
马驰  卫敏  卞孝东  王守敬 《金属矿山》2016,45(3):103-106
为配合山东某大型岩浆分异型钛铁矿资源的开发,对有代表性矿石进行了工艺矿物学研究。结果表明:①该钛铁矿中主要有用金属矿物为钛铁矿和磁铁矿,次要含钛矿物为榍石;脉石矿物主要是角闪石和辉石。②矿石中粗粒钛铁矿多与磁铁矿和榍石紧密共生,三者集合体的粒度主要集中在0.5~0.1 mm,细粒、微细粒钛铁矿和榍石呈固溶体分离结构多分布在辉石、角闪石和黑云母中,一般粒度小于0.004 mm。③矿石中角闪石、辉石等含钛矿物和钛铁矿、榍石极微细粒呈出熔结构产出将造成TiO2回收率较低。④多达54.42%的铁赋存在硅酸盐、碳酸盐和金属硫化物中将造成铁回收率较低。因此,该矿石属难选钛铁矿石。  相似文献   

3.
对云南某钛铁矿进行了工艺矿物学研究。结果表明: 矿石中钛品位为5.62%,主要有用金属矿物为钛铁矿和钒钛磁铁矿,分别占总钛的61.39%和11.03%。脉石矿物主要是斜长石和钛辉石,脉石矿物中主要成分为SiO2和Al2O3,其含量分别为42.35%和12.53%。矿样中粗粒钛铁矿多与钒钛磁铁矿和榍石及硅酸盐紧密共生,其集合体的粒度主要集中在 0.02~0.30 mm。赋存于榍石与硅酸盐矿物中的钛多达27.58%。探索性实验结果表明:弱磁-强磁选可以有效地回收矿石中的强磁性矿物,并抛出大量的脉石矿物,实现钛铁矿的富集。因此,该矿石属于低品位难选钛铁矿,实现钛铁矿物的有效回收对该资源的开发利用具有重要的实践意义。  相似文献   

4.
这是一篇工艺矿物学领域的论文。滇南地区某钒钛磁铁矿矿石不仅有较高的铁、钛,而且伴生钪元素。为实现矿石综合利用,对该矿进行了工艺矿物学研究。采用X射线荧光光谱分析及化学分析手段,查明了矿石化学成分;利用X射线衍射分析仪(XRD)、扫描电镜与能谱分析(SEM-EDS)、电子探针(EPMA)等方法,研究了矿物的工艺特征,重点考查了铁、钛元素的赋存状态。研究结果表明:矿石中铁的主要载体矿物为钛磁铁矿、角闪石,其次为钛铁矿;钛的载体矿物主要为钛铁矿,少量赋存于榍石中;钪主要分布在角闪石中。元素配分结果表明,铁、钛的理论品位分别为71.02%、47.40%,理论回收率分别为40.52%、66.48%。分析了影响选矿回收指标的矿物学因素,为后续选冶工艺提供了理论支撑。  相似文献   

5.
这是一篇工艺矿物学领域的论文。滇南地区某钒钛磁铁矿矿石不仅有较高的铁、钛,而且伴生钪元素。为实现矿石综合利用,对该矿进行了工艺矿物学研究。采用X 射线荧光光谱分析及化学分析手段,查明了矿石化学成分;利用X 射线衍射分析仪(XRD)、扫描电镜与能谱分析(SEM-EDS)、电子探针(EPMA)等方法,研究了矿物的工艺特征,重点考查了铁、钛元素的赋存状态。研究结果表明:矿石中铁的主要载体矿物为钛磁铁矿、角闪石,其次为钛铁矿;钛的载体矿物主要为钛铁矿,少量赋存于榍石中;钪主要分布在角闪石中。元素配分结果表明,铁、钛的理论品位分别为71.02%、47.40%,理论回收率分别为40.52%、66.48%。分析了影响选矿回收指标的矿物学因素,为后续选冶工艺提供了理论支撑。  相似文献   

6.
为了回收陕西某难选原生钒钛磁铁矿石中的钛铁矿资源,在对矿石进行工艺矿物学研究基础上,对干式中磁抛废后的矿石进行了强磁预选—反浮选脱硫—浮选选钛工艺试验。结果表明:1该矿石属含硫高磷低品位钒钛磁铁矿石,钛主要以钛铁矿形式存在,占总钛的67.66%,主要呈浸染状产出,常发生榍石化,沿钛磁铁矿边缘或粒间嵌布,少数零星出现在脉石中;硫主要以黄铁矿形式存在;脉石矿物主要为透辉石、绿泥石、角闪石、斜长石等硅酸盐矿物。2矿石经粗粒中磁干式抛废—弱磁选铁—强磁预选富集钛—反浮选脱硫—浮选提纯钛铁矿的工艺流程处理,实现了对难选钛铁矿的高效回收,最终获得铁品位为55.12%、含钛10.17%、铁回收率为44.20%的铁精矿,以及Ti O2品位为48.01%、回收率为51.84%的钛精矿。实现了钛铁矿与比磁化系数接近的铁硅酸盐矿物等的有效分离。  相似文献   

7.
为综合回收利用风化残坡积型钛矿中有价金属,探讨钛等有价元素的可回收性,采用传统工艺矿物学研究方法对国内某风化粘土型钛矿的矿石特性进行了系统的研究,并分析了影响选矿工艺的因素,提出了可行的选矿工艺方案。研究结果表明,该矿TiO2品位4.5%,主要含钛矿物为钛铁矿、白钛石和钒钛磁铁矿,矿石含泥量近80%。钛铁矿多为单体,部分氧化蚀变为白钛石,均被粘土矿物包裹或与其连生,钒钛磁铁矿为次要回收矿物,其中包含部分呈固溶体分离的钛铁矿片晶。矿石中钛分散较严重,采用物理选矿分选钛的理论回收率为48%左右,铁理论回收率仅为4%左右。结合矿石特点与工艺矿物学研究结果,该矿石选矿试验可采用“擦洗脱泥-重选-磁选”联合流程,在重选前应采用强力搅拌脱泥以消除“粘结效应”,继而采用重选预先抛尾后再磁选,之后利用强磁选、摇床精选等手段进一步提高精矿品位。该研究为选矿回收该矿床中有价金属提供了方向性指导。   相似文献   

8.
某地钛中矿物组成复杂,且粒度分布粗细不均,少量已赤铁矿化、褐铁矿化,并且部分钛磁铁矿磁性、可浮性与钛铁矿相似,属较难分选矿物。针对该矿石性质进行了多种选矿工艺试验研究,确定了弱磁脱除部分磁铁矿、强磁预抛尾、重选与浮选联合处理磁选粗精矿的磁选—重选—浮选联合选矿流程。浮选是回收细粒级钛铁矿的有效方法。增加浮选流程可提高钛精矿中Ti O_2回收率13%,而Ti O_2品位基本不变。在获得最佳浮选条件的基础上,进行了全流程闭路试验,获得了Ti O_2品位47.11%、回收率69.88%的钛精矿,为当地钛矿物的有效回收提供了技术依据。  相似文献   

9.
王越  王婧 《矿产综合利用》2022,43(5):200-205
为研究某含钛矿石是否具有综合利用价值,通过光学显微镜、X射线衍射仪、扫描电镜及矿物自动分析仪、电子探针等分析技术,对其物质组成、目的矿物嵌布特征、有价元素赋存状态等开展了系统的研究。结果表明,该矿石为含铁、钛的闪长岩类,矿石中TiO2品位为2.27%、TFe品位为11.36%,矿石中的铁品位低,没有达到铁矿石的最低工业品位。矿石中的TiO2主要赋存于钛铁矿及钛铁闪石中,分布率分别为40.02%和44.75%,占总分布率的84.79%;少量分布在榍石、金红石和磁铁矿(赤铁矿)中,分布率分别为7.93%、5.67%和1.59%,其中钛铁矿及金红石的矿物含量仅为1.86%和0.13%。矿石中金红石含量低,多与榍石、钛铁矿等连生,粒度微细,金红石中含有钙、铁、硅等杂质元素,这会直接影响金红石精矿的品位及回收率,采用阶磨阶选流程及重选、磁选及浮选的联合工艺,可有效回收矿石中的有用矿物。  相似文献   

10.
通过X射线衍射、矿相显微镜和扫描电子显微镜等技术手段,对辽西某钒钛磁铁矿进行了工艺矿物学研究。结果表明:矿石中磁铁矿含量很少,铁矿物主要为假象赤铁矿,钛铁矿是主要的钛矿物,脉石矿物以长石和辉石为主;矿石中大部分钒钛磁铁矿发生了假象赤铁矿化而导致其磁性变弱;钒钛磁铁矿晶格中普遍存在以类质同象的形式存在的Ti O2等成分,且部分钒钛磁铁矿发生了不同程度的榍石化,可能使铁精矿具有"高钛低铁"的特点。根据工艺矿物学特点,该矿石宜在精选作业前先采用重选、磁选等高效、低成本的工艺进行预处理,以减小矿石的处理量;该矿的铁精矿宜采用非高炉法进行冶炼。  相似文献   

11.
采用扫描电子显微镜、电子探针、X射线衍射分析等技术手段,基本查明了甘肃某含钪钛铁矿的工艺矿物学性质。结果表明,矿石中铁、钛矿物总量较低,为低硫低磷含钪低品位钛铁矿矿石;主要脉石矿物为角闪石、长石,其次为辉石,伴生元素钪主要分布在角闪石中;矿石中磁铁矿和钛铁矿主要毗邻嵌布在脉石粒间或呈不规则粒状嵌布在脉石中,嵌布粒度相对较粗,磁性相对较强;在主要脉石矿物中,角闪石伴生元素钪,粒度较粗,为电磁性硅酸盐矿物,长石呈它形粒状嵌布在暗色硅酸盐矿物粒间或被其包裹,无磁性,不含钪。根据矿石的工艺矿物学特性,该矿石宜采用粗粒抛尾进行预处理,然后采用磁选、重选等高效、低成本的工艺进行预富集,以减少后续作业的处理量,降低选矿成本。  相似文献   

12.
为了实现钒钛磁铁矿尾矿中钛、铁等资源的二次综合利用,提高资源利用率,采用矿相显微镜、扫描电子显微镜和矿物自动解离系统(MLA)对某钒钛磁铁矿尾矿中铁和钛的赋存规律进行了详细研究,讨论了影响尾矿中钛、铁回收的矿物学因素。结果表明,该尾矿的颗粒较细,矿物主要包括钛铁矿、钛磁铁矿、黄铁矿等金属矿物和攀钛透辉石、斜长石和角闪石等脉石矿物组成;矿物中钛磁铁矿和钛铁矿除部分以单体解离态产出外,多呈形态各异的粒状沿脉石的粒间、边缘、裂隙及孔洞填充而构成较为复杂的镶嵌和包裹关系;铁、钛元素在目的矿物中的赋存比例分别为19.87%和51.62%;铁在钛铁矿、攀钛透辉石、角闪石中的赋存比例占78.85%,单体解离度为72.29%,TiO_2在钛铁矿、攀钛透辉石和角闪石的赋存比例占90.94%,单体解离度为71.43%,因此实现钛磁铁矿、钛磁铁矿和攀钛透辉石、角闪石的有效分离是提高铁、钛回收率的关键。  相似文献   

13.
矿石中金属矿物主要为磁铁矿、赤铁矿、磁赤铁矿、钛磁铁矿及钛铁矿等,磁铁矿是矿石中的主要铁矿物,赤铁矿和磁赤铁矿为磁铁矿的次生矿物,一般分布于磁铁矿中;钛铁矿物种类较多,主要为钛磁铁矿,其次为钛铁矿。磁铁矿和钛磁铁矿以粗粒浸染状嵌布为主,钛铁矿以细粒浸染状嵌布为主,磁铁矿与钛铁矿嵌布关系密切,矿物颗粒结合紧密,这种构造导致2种矿物完全解离困难,尤其是以薄片状、格子状分布于磁铁矿中的钛铁矿无法解离,这种现象会影响精矿铁品位以及钛的回收率。  相似文献   

14.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿-阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选-预选精矿二阶段磨矿阶段磁选-磁选精矿螺旋溜槽重选-重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号