首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 67 毫秒
1.
四川某铁精矿中TFe品位为64.56%,杂质成分SiO2、Al2O3含量分别为5.50%和2.01%。物质组分研究表明,铁矿物主要以磁性铁形式存在,采用“阶段磨矿(再磨过程添加分散剂H01)-阶段磁选”工艺对该铁精矿进行提质降杂实验,实验可获得TFe品位为72.11%的超纯铁精矿产品,精矿中杂质成分SiO2含量为0.20%,Al2O3的含量为0.16%,酸不溶物的含量为0.28%,TFe的回收率为92.72%。  相似文献   

2.
河北某普通磁铁矿TFe品位为65.25%,矿石性质结构简单,具有制备超纯铁精矿的潜力。研究采用多元素及X射线衍射图、物相分析等方法对原矿进行了工艺矿物学研究,并在此基础上对其进行了提纯试验。结果表明,原矿经过弱磁选粗选后,在磨矿细度-0.038 mm占85%的条件下经弱磁选再选、磁选柱精选得到TFe品位为71.31%的磁选柱精矿以及TFe品位68.12%、产率为3.32%的磁选柱铁尾矿。通过进一步考察药剂制度和工艺流程对铁矿精矿品位、回收率等选别指标的影响,确定了合适的药剂制度。而后磁选柱精矿经1粗3精反浮选降硅工艺试验流程,最终可获得含TFe品位71.95%、综合回收率为80.50%的超纯铁精矿,浮选尾矿TFe品位68.17%符合普通铁精矿标准。通过对选别产品进行试样化学成分分析及残余药剂测定,进一步证明该工艺流程可以实现超纯铁精矿的制备。该工艺在抛尾率为10.79%条件下,将原矿样的73.04%转化为超纯铁精矿,对这一地区超纯铁精矿的制备具有重要的指导意义,也为国内其他地区磁铁矿制备超纯铁精矿的研究提供了一定的参考价值。  相似文献   

3.
回顾超纯铁精矿和优质铁精矿的用途及常用生产方法;介绍某地铁矿石的选矿试验成果.通过试验确定了适合于该铁矿生产超纯铁精矿和优质铁精矿的几种工艺流程及其工艺参数.对几种工艺流程进行技术经济比较后,分别推荐了生产超纯铁精矿和优质铁精矿的生产工艺流程.  相似文献   

4.
以含TFe 67.70%,SiO2 4.88% 的普通铁精矿为原料,采用磨矿、弱磁选-磁重选-反浮选工艺,可生产出含TFe 72.02%,SiO2 0.27% 的超纯铁精矿,同时可获得TFe 品位70.57%的普通铁精矿,TFe 总回收率达91.96% 。  相似文献   

5.
为了简化超纯铁精矿的制备工艺,提高企业经济效益,针对河北某地磁铁矿进行了超纯铁精矿制备的试验研究。研究表明,原矿全铁品位为35.59%,主要以磁铁矿形式存在,分布率为91.07%,均匀地分布在各个粒级中。经过阶段磨矿-弱磁选以及磁选柱两次精选流程,可获得全铁品位为71.79%,回收率为77.99%的超纯铁精矿。  相似文献   

6.
磁性材料用超纯铁精矿生产工艺研究   总被引:2,自引:0,他引:2  
介绍了磁选方法预处理原料,制备适合于永磁铁氧体生产的合格超纯铁精矿。试验研究表明,在磨矿细度98%-37μm、磁场强度0.1T、分散剂用量3mg/L、有机高分子用量ω=4×10-6的最佳工艺条件下,生产出TFe71.8%、SiO2<05%的超纯铁精矿;生产出合格的铁氧体永磁材料,其指标:Br=0.2105T,Hc=129.8kA/m,(B·H)max=7.2kJ/m3。  相似文献   

7.
以辽宁本溪某原矿TFe品位30.45%的铁矿为原料制备超级铁精矿。采用阶段磨矿-弱磁选-磁选柱降硅-反浮选提纯工艺,可以获得TFe品位71.25%、回收率65.02%、SiO2含量0.15%、酸不溶物含量0.10%的低杂质合格超级铁精矿,以及TFe品位65.28%、回收率19.64%的普通铁精矿。  相似文献   

8.
针对广东托盘垌铁矿石,分析制备超纯铁精矿的难点。通过矿相分析可知,该铁矿属于高硅低硫细微粒嵌布的磁铁矿。磨矿细度试验表明反浮选的最佳选矿细度为-38μm 97%,此时铁精矿品位71.29%;激光粒度分析可知铁精矿中的平均粒径为11.49μm;SEM-EDS分析发现,铁精矿颗粒中还有少量Si O2连生体;随着磨矿细度-38μm含量超过97%,铁矿物的品位和回收率反而双双下降。沉降试验表明,反浮选入选矿物颗粒较细时矿浆中矿物会凝聚絮团,且粒度越细絮团现象越明显。因此,矿石选别难点在于磨矿细度:矿石粒度过粗,矿石没有完全单体解离;矿石过细会产生絮凝聚团,都影响超纯铁精矿纯度。  相似文献   

9.
喻明军 《现代矿业》2023,(1):163-167
为探究某赤铁矿精矿制备超纯铁精矿的可行性进行了选矿工艺试验,该赤铁矿精矿为磁赤混合矿去除磁铁矿后的产物,全铁品位为62.74%,通过考察磨矿细度、精选段抑制剂和捕收剂用量对赤铁矿精矿品位、回收率等选别指标的影响,确定了合适的药剂制度和工艺流程。试验结果表明:赤铁矿精矿经磨矿—脱泥—1粗2精反浮选,可获得全铁品位68.32%的超纯铁精矿,浮选作业回收率为78.67%。  相似文献   

10.
为开发利用某低品位难选铁矿石,并获得铁品位大于64%的铁精矿,实验室进行了阶段磨矿—弱磁选试验,在一段磨矿细度-0.076 mm 45%、二段磨矿细度-0.076 mm 75%、三段磨矿细度-0.076 mm 90%的条件下,可获得铁品位64.10%,回收率77.99%的铁精矿。  相似文献   

11.
介绍了武汉科技大学自行设计的磁团聚重选机对金山店铁矿选矿厂弱磁选精矿进行分选的试验结果。经试验结果表明,在给矿速度、给水量、排矿速度和分散剂用量等的最佳条件下,获得了产率为50.30%、全铁品位70.48%、硅杂质含量小于0.5%的超纯铁精矿。  相似文献   

12.
为了确定抚顺某磁铁矿石生产超级铁精矿的工艺流程进行了选矿试验。试验采用高压辊磨闭路辊压(湿筛)—粗粒中场强磁选—磨矿分级—弱磁选—预先分级—磨矿分级—弱磁选—浮选流程处理。在高压辊磨机工作压力为8.5 MPa、一段磨矿细度为-0.075 mm占65%,高品位铁精矿高频细筛筛孔宽为0.075 mm,塔磨再磨细度为-0.038 mm占90%,高纯铁精矿1粗2精阳离子反浮选,捕收剂十二胺分段添加量为16.37+8.18+3.27 g/t情况下,可获得:全铁品位为68.01%、全铁回收率为86.21%的高品位铁精矿;全铁品位70.95%、全铁回收率为42.32%的高纯铁精矿,全铁品位为65.40%、全铁回收率为43.89%的副产铁精矿;全铁品位为71.81%、全铁回收率为17.93%、酸不溶物含量0.14%的超级铁精矿,全铁品位为67.08%、全铁回收率为68.28%的副产铁精矿。  相似文献   

13.
新疆西昆仑铁矿为石膏型磁铁矿,是一种新的磁铁矿类型—帕米尔型磁铁矿。针对原矿磁铁矿嵌布粒度较粗的特点,采用磨矿—磁选工艺获得普通铁精矿,再采用再磨—磁场筛选法精选工艺,获得了高纯铁精矿,最终获得的分选指标为:精矿产率19.39%、全铁品位71.86%、二氧化硅含量0.46%,该研究对于同类型铁矿的深度开发有一定的指导意义。  相似文献   

14.
用一种新工艺对铁矿矿石进行了可选性研究,获得了铁品位为71.84%、二氧化硅含量为0.13%的超级铁精矿.  相似文献   

15.
辽宁某开采深度为1 400 m的深部铁矿石铁品位为37.03%,铁主要以磁性铁及赤褐铁矿的形式存在,分布率分别为72.83%、22.52%,硫、磷等有害元素含量很低。为开发利用该矿石,对其进行了弱磁选-强磁选-混磁精矿反浮选工艺研究。结果表明:矿样磨细至-0.043 mm占75%后,经1段弱磁选-2段强磁选,可得到铁品位47.50%、回收率95.01%的混磁精矿;混磁精矿再磨至-0.038 mm占95%后,以淀粉为抑制剂、RS-3为捕收剂、经1粗1精2扫阳离子反浮选流程处理,可获得铁品位67.21%、回收率85.03%的精矿产品。采用磁选-反浮选流程处理该深部铁矿石获得了较为理想的选别指标,对类似复杂难选深部铁矿石选矿具有借鉴意义。  相似文献   

16.
陕西某贫铁矿石选矿试验研究   总被引:1,自引:0,他引:1  
根据陕西某贫铁矿石的特性, 对其进行了选矿试验研究。结果表明: 原矿破碎至-12 mm后, 先经磁滑轮抛弃22.67%的废石, 再经三段磨矿和三段湿式弱磁选, 所得铁精矿产率23.41%, TFe品位为62.95%, TFe回收率为72.09%, 其中MFe回收率为94.26%。  相似文献   

17.
某铁矿山由于原矿铁矿物嵌布粒度较细,所产铁精矿含铁品位仅为63%~65%,品位不高.通过阶段磨矿阶段选别、合理控制磁场强度及精选次数等手段,成功地运用全磁选工艺获得铁品位为66.97%的铁精矿,铁回收率达80.31%.  相似文献   

18.
由北京矿冶研究总院研制的BL1500螺旋溜槽用于赤铁矿、镜铁矿、铬铁矿等弱磁性矿的原矿重选在选矿工业中得到了大量的应用。承德某铁矿首次将BL1500螺旋溜槽用于该矿磁铁矿磁选后的铁精矿再选,以解决磁铁矿在磁选中因磁团聚而影响铁精矿品位的问题。采用“磁-重”的联合流程对原流程进行改造,取得了良好的效果,经工业生产考核,改造后,在选厂总回收率不变的情况下,可以提高最终铁精矿品位2-3%。  相似文献   

19.
胡洋  张梦雨  陈飞  刘佳毅 《现代矿业》2019,35(8):116-119
试验用极贫铁矿石铁品位为13.90%,有害元素磷含量为0.86%,磁性铁占总铁的46.04%,主要以磁赤铁矿、磁铁矿形式存在,磁赤铁矿、磁铁矿以半自形变晶结构为主,嵌布粒度大于0.1 mm的超过75%,约有5%的磁赤铁矿的嵌布粒度小于0.05 mm。为确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,矿石采用3阶段磨选流程处理,在一段磨矿细度为-0.076 mm占38.5%、弱磁选磁场强度为115 kA/m,二段磨矿细度为-0.076 mm占74%、弱磁选磁场强度为115 kA/m,三段磨矿细度为-0.043 mm占92%、弱磁选磁场强度为115 kA/m的情况下,获得了铁品位为60.12%、铁回收率为40.22%的铁精矿,铁精矿硫、磷含量均较低,满足产品质量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号