首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batch experiments were carried out for the sorption of eosin yellow, malachite green and crystal violet onto jute fiber carbon (JFC). The operating variables studied are the initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm by non-linear regression method. Langmuir isotherm was found to be the optimum isotherm for eosin yellow/JFC system and Freundlich isotherm was found to be the optimum isotherm for malachite green/JFC and crystal violet/JFC system at equilibrium conditions. The sorption capacities of eosin yellow, malachite green and crystal violet onto JFC according to Langmuir isotherm were found to 31.49 mg/g, 136.58 mg/g, 27.99 mg/g, respectively. A single stage batch adsorber was designed for the adsorption of eosin yellow, malachite green and crystal violet onto JFC based on the optimum isotherm. A pseudo second order kinetic model well represented the kinetic uptake of dyes studied onto JFC. The pseudo second order kinetic model successfully simulated the kinetics of dye uptake process. The dye sorption process involves both surface and pore diffusion with predominance of surface diffusion at earlier stages. A Boyd plot confirms the external mass transfer as the rate limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc(0.33)) and was found to be agreeing with the expression:  相似文献   

2.
In this study, a series of activated carbons were prepared from Tuncbilek lignite with different particle size by chemical activation. The effect of particle size of lignite on the pore structure of activated carbon and the adsorption kinetics of crystal violet (CV) onto these activated carbons was investigated. BET surface area values of activated carbon samples were determined in the range of 940–1054 m2 g?1. Adsorption capacity of CV onto activated carbons was investigated in a batch system by considering the effects of various parameters such as initial dye concentration, agitation time and adsorption temperature. The Langmuir and Freundlich isotherms were used to describe the adsorption equilibrium studies. The adsorption kinetics of CV has been discussed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Results show that the pseudo-second-order kinetic equation could describe the adsorption kinetics for CV onto activated carbons. Using the thermodynamic equilibrium coefficient obtained at different temperatures and for the initial dye, the thermodynamic constants of adsorption (ΔG°, ΔH° and ΔS°) were also evaluated.  相似文献   

3.
The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R(2)>0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), and the activation energy (E(a)) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.  相似文献   

4.
Batch sorption experiments were carried out using a novel adsorbent, guava leaf powder (GLP), for the removal of methylene blue (MB) from aqueous solutions. Potential of GLP for adsorption of MB from aqueous solution was found to be excellent. Effects of process parameters pH, adsorbent dosage, concentration, particle size and temperature were studied. Temperature-concentration interaction effect on dye uptake was studied and a quadratic model was proposed to predict dye uptake in terms of concentration, time and temperature. The model conforms closely to the experimental data. The model was used to find optimum temperature and concentration that result in maximum dye uptake. Langmuir model represent the experimental data well. Maximum dye uptake was found to be 295mg/g, indicating that GLP can be used as an excellent low-cost adsorbent. Pseudo-first-order, pseudo-second order and intraparticle diffusion models were tested. From experimental data it was found that adsorption of MB onto GLP follow pseudo second order kinetics. External diffusion and intraparticle diffusion play roles in adsorption process. Free energy of adsorption (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were calculated to predict the nature of adsorption. Adsorption in packed bed was also evaluated.  相似文献   

5.
In order to evaluate the adsorptive capacities of granular activated carbon produced from coffee grounds by chemical activation, the adsorption of different phenols and acid and basic dyes, has been carried out. The comparison with a commercial activated carbon has been made. Adsorption isotherms of phenols and dyes (acid and basic) onto produced and commercial granular activated carbons were experimentally determined by batch tests. Both Freundlich and Langmuir models are well suited to fit the adsorption isotherm data. As a result, the coffee grounds based activated carbon may be promising for phenol and dye removal from aqueous streams.  相似文献   

6.
In this research paper we report hydrothermal synthesis of NH2-UiO-66, a metal organic framework (MOF) with zirconium as metal and amino terephthalic acid as a linker. The synthesized MOF was characterized by XRD, FTIR, SEM and BET surface area. As a potential application in water treatment, an adsorptive removal of safranin dye was studied using the synthesized material. The effect of initial concentration and pH of the dye solution was studied on the dye adsorption capacity of the material. An optimum set of conditions resulting into maximum dye adsorption was found out. The maximum adsorption capacity of the MOF was observed to be 390?mg/g at neutral pH of the solution and at room temperature. The experimental data was fitted with Langmuir, Freundlich and Temkin adsorption isotherm models. The kinetics of adsorption was studied using pseudo first order and pseudo second order model. The dye adsorption mechanism was also attempted.  相似文献   

7.
The adsorption behaviors of bisphenol-A, which has been listed as one of endocrine disrupting chemicals, from aqueous solution onto four minerals including andesite, diatomaceous earth, titanium dioxide, and activated bleaching earth, and two activated carbons with coconut-based and coal-based virgins were examined in this work. Based on the adsorption results at the specified conditions, the adsorption capacities of activated carbons are significantly larger than those of mineral adsorbents, implying that the former is effective for removal of the highly hydrophobic adsorbate from the aqueous solution because of its high surface area and low surface polarity. The adsorption capacities of bisphenol-A onto these mineral adsorbents with different pore properties are almost similar in magnitude mainly due to the weakly electrostatic interaction between the mineral surface with negative charge and the target adsorbate with hydrophobic nature. Further, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of bisphenol-A onto the two common activated carbons at different solution conditions. It was found that the adsorption process could be well described with the pseudo-second-order model. The kinetic parameters of the model obtained in the present work are in line with the pore properties of the two adsorbents.  相似文献   

8.
Kinetics adsorption experiments were conducted to evaluate the adsorption characteristics of a cationic dye (methylene blue, MB) onto nitric-acid treated water-hyacinth (N-WH). Results showed that N-WH can remove MB effectively from aqueous solution. The loading of MB onto N-WH was found to increase significantly with increasing the initial MB concentration, but the residual concentration of MB in solution also increased. A complete removal of MB from solution was only achieved at the lower range of initial MB concentration (less than 286 mg/L). Temperature had a slight effect on the amount adsorbed at equilibrium. The adsorption rate was fast and more than half of the adsorbed-MB was removed in the first 15 min at room temperature, which makes the process practical for industrial application. The adsorption kinetics at room temperature could be expressed by the pseudo second order model, while at higher temperatures (45-80 degrees C) and low MB concentration (97 mg/L) both Lagergren's model and the pseudo second order model can be used to predict the kinetics of adsorption. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then gradually changed to intraparticle diffusion control at a later stage. The initial period where external mass transfer is the rate controlling step was found to increase with increasing initial MB concentration and decrease with increasing temperature. The increase in temperature was also found to increase the rate of adsorption and reduce the time required to reach equilibrium. The initial rate of adsorption, h(o), was calculated, it was found to increase with increasing temperature, while the increase in MB concentration decreased h(o) at the lower concentration range then increased h(o) again at high concentration. The value of the activation coefficient, E, was found to be 8.207 kJ/mol, which indicates a diffusion controlled process.  相似文献   

9.
The reuse of dried activated sludge for adsorption of reactive dye   总被引:3,自引:0,他引:3  
Adsorption processes are alternative effective methods for removal of textile dyes from aqueous solutions. The adsorption ability of adsorbent affects by physico-chemical environment for this reason in this paper effect of initial pH, dye concentrations, temperature and dye hydrolyzation were determined in a batch system for removal of reactive dye by dried activated sludge. The Langmuir isotherm model was well described of adsorption reactive dye and maximum monolayer adsorption capacity (at pH 2) of activated sludge was determined as 116, 93 and 71mgg(-1) for 20 degrees , 35 degrees and 50 degrees C, respectively. Initial pH 2, 20 degrees C and 30min contact time are suitable for removal of reactive dyes from aqueous solutions. Activated sludge was characterized by FT-IR analysis and results showed that active sludge has different functional groups and functional groups of activated sludge are able to react with dye molecules in aqueous solution. The pseudo first-order, second-order and intraparticle diffusion kinetics were used to describe the kinetic data. The pseudo second-order kinetic model was fit well over the range of contact times and also an intra particle diffusion kinetic model was fit well but in the first 30min. The dye hydrolyzation was affected adsorption capacity of biomass and adsorption capacity of biomass decreased with dye hydrolyzation from 74 to 38mgg(-1).  相似文献   

10.
Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.  相似文献   

11.
The sorption of SPANDS from aqueous solution onto the macroporous polystyrene anion exchangers of weakly basic Amberlyst A-21 and strongly basic Amberlyst A-29 in a batch method was studied. The effect of initial dye concentration and phase contact time was considered to evaluate the sorption capacity of anion exchangers. Equilibrium data were attempted by various adsorption isotherms including the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. A comparison of kinetic models applied to the adsorption rate constants and equilibrium sorption capacities was made for the Lagergren first-order, pseudo second-order and Morris–Weber intraparticle diffusion kinetic models. The results showed that the adsorption isotherm is in the good agreement with the Langmuir equation and that the adsorption kinetics of SPADNS on both anion exchangers can be best described by the pseudo second-order model.  相似文献   

12.
This study represents new material based on chitosan modified by zeolite A as adsorbent for anionic dye, using Bezactive Orange 16 as a model compound. Interactions between dye and chitosan/zeolite A film at initial concentrations and pH dye solution was investigated. In order to determine kinetics and the mechanism of adsorption four kinetic models were used. The results showed that the adsorption of Bezactive Orange 16 dye onto chitosan/zeolite A can be best described by pseudo-second order model. According to the Langmuir model, the maximum adsorption capacity reached 305.8 mg/g. The films could be potentially used as absorbents for anionic dye removal in wastewater treatment process.  相似文献   

13.
Adsorptive removal of methylene blue by tea waste   总被引:3,自引:0,他引:3  
The potentiality of tea waste for the adsorptive removal of methylene blue, a cationic dye, from aqueous solution was studied. Batch kinetics and isotherm studies were carried out under varying experimental conditions of contact time, initial methylene blue concentration, adsorbent dosage and pH. The nature of the possible adsorbent and methylene blue interactions was examined by the FTIR technique. The pH(pzc) of the adsorbent was estimated by titration method and a value of 4.3+/-0.2 was obtained. An adsorption-desorption study was carried out resulting the mechanism of adsorption was reversible and ion-exchange. Adsorption equilibrium of tea waste reached within 5h for methylene blue concentrations of 20-50mg/L. The sorption was analyzed using pseudo-first-order and pseudo-second order kinetic models and the sorption kinetics was found to follow a pseudo-second order kinetic model. The extent of the dye removal increased with increasing initial dye concentration. The equilibrium data in aqueous solutions were well represented by the Langmuir isotherm model. The adsorption capacity of methylene blue onto tea waste was found to be as high as 85.16mg/g, which is several folds higher than the adsorption capacity of a number of recently studied in the literature potential adsorbents. Tea waste appears as a very prospective adsorbent for the removal of methylene blue from aqueous solution.  相似文献   

14.
This paper deals with the application of wheat shells (WS), an agricultural by-product, for the removal of direct blue 71 (DR) from aqueous solution. The characteristics of WS surface, such as surface area, Bohem titration and scanning electron microscopy (SEM) were obtained. The removal of direct blue 71 onto WS from aqueous solution was investigated by using parameters, such as pH, temperature, adsorbent dose, contact time and initial concentration. The adsorption process attains equilibrium within 36 h. The extent of dye removal decreased with increasing adsorbent dosage and also increased with increasing contact time, temperature, in solution concentration. Optimum pH value for dye adsorption was determined between 6 and 8. The experimental data were analysed by the Langmuir and Freundlich models of adsorption. It was found that the Langmuir equation fit better than the Freundlich equation. Maximum adsorption capacity (Q(m)) was calculated as at different temperatures (293, 303 and 313 K) 40.82, 45.66 and 46.30 mgg(-1), respectively. In addition, the adsorption data obtained at different temperatures of DR by WS were applied to pseudo first-order, pseudo second-order and Weber-Morris equations, and the rate constants of first-order adsorption (k(1)), the rate constants of second-order adsorption (k(2)) and intraparticle diffusion rate constants (k(3)) at these temperatures were calculated, respectively. The rates of adsorption were found to conform to pseudo second-order kinetics with good correlation (R(2)>or=0.9904). Also, free energy of adsorption (DeltaG degrees), enthalpy (DeltaH degrees), and entropy (DeltaS degrees) changes were determined to predict the nature of adsorption. Furthermore, the results indicate that WS could be employed as a low-cost alternative to other adsorbents in the removal of direct blue 71 from aqueous solution.  相似文献   

15.
16.
De-Oiled Soya, an agricultural waste material and Bottom Ash a waste of power plants, have been used as adsorbents for the removal and recovery of a triarylmethane dye Fast Green FCF from wastewater. Batch studies have been carried by observing the effects of pH, temperature, concentration of the dye, amount of adsorbents, sieve size of adsorbent, contact time, etc. Graphical correlation of various adsorption isotherm models like, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich have been carried out for both the adsorbents. The adsorption over both the materials has been found endothermic and feasible in nature. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process have been calculated. The kinetic studies suggest the process following pseudo first order kinetics and involvement of particle diffusion mechanism. The bulk removal of the dye has been carried out by passing the dye solution through columns of Bottom Ash and De-Oiled Soya and saturation factor of each column has been calculated. Attempts have also been made to recover the dye by eluting dilute NaOH through the columns.  相似文献   

17.
Rice straw, an abundant, lignocellulosic agricultural residue worldwide, was thermochemically modified with citric acid to develop a biodegradable cationic adsorbent. The morphological and chemical characteristics of rice straw and acid-modified rice straw were investigated by scanning electron microscopy, surface area, and porosity analysis by the BET (Brunauer, Emmett, and Teller) nitrogen adsorption method and Fourier transform infrared spectroscopy. The modification process leads to the increase in the specific surface area and pore size of rice straw. In order to investigate the application potential of the prepared adsorbent to remove a cationic dye (Crystal violet) from its aqueous solution, a continuous adsorption study was carried out in a laboratory scale fixed-bed column packed with acid-modified rice straw. Effect of different flow rates and bed heights on the column breakthrough performance was investigated. Results show that with increasing bed height and decreasing flow rate, the breakthrough time was delayed. In order to determine the most suitable model for describing the adsorption kinetics of Crystal violet in the fixed-bed column system, the Bed Depth Service Time model as well as the Thomas model was fitted to the experimental data. An artificial neural network (ANN) based model for determining the dye concentration in the column effluent was also developed. An extensive error analysis was carried out between experimental data and data predicted by the models using the following error functions: correlation coefficient (R 2), average relative error (ARE), sum of the absolute error (SAE), and χ2 statistic test. Based on the values of the error functions, the ANN model was most appropriate for describing the dynamic dye adsorption process.  相似文献   

18.
This paper presents a study on the batch adsorption of basic dye, methylene blue, from aqueous solution (40 mg L(-1)) onto cedar sawdust and crushed brick in order to explore their potential use as low-cost adsorbents for wastewater dye removal. Adsorption isotherms were determined at 20 degrees C and the experimental data obtained were modelled with the Langmuir, Freundlich, Elovich and Temkin isotherm equations. Adsorption kinetic data determined at a temperature of 20 degrees C were modelled using the pseudo-first and pseudo-second-order kinetic equations, liquid-film mass transfer and intra-particle diffusion models. By considering the experimental results and adsorption models applied in this study, it can be concluded that equilibrium data were represented well by a Langmuir isotherm equation with maximum adsorption capacities of 142.36 and 96.61 mg g(-1) for cedar sawdust and crushed brick, respectively. The second-order model best describes adsorption kinetic data. Analysis of adsorption kinetic results indicated that both film- and particle-diffusion are effective adsorption mechanisms. The Influence of temperature and pH of the solution on adsorption process were also studied. The extent of the dye removal decreased with increasing the solution temperature and optimum pH value for dye adsorption was observed at pH 7 for both adsorbents. The results indicate that cedar sawdust and crushed brick can be attractive options for dye removal from dilute industrial effluents.  相似文献   

19.
Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.  相似文献   

20.
The adsorption of phosphate onto alunite in a batch adsorber has been studied. Four kinetic models including pseudo first- and second-order equation, intraparticle diffusion equation and the Elovich equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phosphate onto alunite could be described by the pseudo second-order equation. Adsorption of phosphate onto alunite followed the Langmuir isotherm. A model has been used for the design of a two-stage batch adsorber based on pseudo second-order adsorption kinetics. The model has been optimized with respect to operating time in order to minimize total operating time to achieve a specified amount of phosphate removal using a fixed mass of adsorbent. The results of two-stage batch adsorber design studies showed that the required times for specified amounts of phosphate removal significantly decreased. It is particularly suitable for low-cost adsorbents/adsorption systems when minimising operating time is a major operational and design criterion, such as, for highly congested industrial sites in which significant volume of effluent need to be treated in the minimum amount of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号