首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behaviour of fatigue crack growth and closure through a compressive residual stress field is investigated by performing fatigue crack growth tests on welded SEN specimens of a structural steel (JIS SM50A). Depending on the type of the initial residual stress in the region of crack growth, the growth and closure of the crack show different behaviour. In particular, in the transition region from a compressive residual stress field to a tensile residual stress field, the fatigue crack growth rates cannot be described by the effective stress intensity factor range ΔKeff, based on the measured crack opening stress intensity factor Kop. Also it is found that the R'-method using the data of da/dN vs ΔK for residual stress-free specimens, with the effective stress ratio R'[=(Kmax+Kr)/(Kmin+Kr)], gives non-conservative predictions of the growth rates in the transition region. Observations of crack closure behaviour in this study indicates that partial opening of the crack occurs and this plays an important role in crack growth through a compressive residual stress field. Based on the concept of a partial opening point (defined and measured in this work), fatigue crack growth behaviour can be better explained.  相似文献   

2.
In this study, the effects of stress ratio, microstructure and fracture surface roughness on the fatigue properties of a two-phase cast stainless steel were investigated. This behaviour was examined by means of the fracture mechanics approach and fractography. The fatigue crack growth rate decreased with decreasing stress ratio. The stress ratio markedly influenced the fatigue crack growth rate as ΔK approached the ΔKth value. The roughness of the fracture surface was greater in the as-cast material than in the heat-treated material. Analysis of the crack growth data using ΔKeff showed that the effect of R ratio could be explained but that the effect of microstructure on crack growth rate could not.  相似文献   

3.
Abstract— Fatigue crack propagation threshold values have been determined with two experimental methods, it., the constant R method and the constant Kmax method. Three materials, namely A17075-T7351 and Ti6A14V STA in the LT- and TL-orientations, and a Ti-turbine disk material (IMI 685) in the CR-orientation, were investigated. The paper is divided into 3 parts. In the first part the test conditions, the experimental results and the conclusions drawn from the experimental results are presented, namely that the three different functional dependencies of ΔKth on R cannot be reconciled with present continuum mechanics concepts. In the second part, some facts used in conjunction with the da/dN–ΔKeff methodology are applied to the non-propagation condition ΔKth. Parameters such as KOp, the threshold ΔKT, and a parameter “KLL” are investigated by numerical modelling of their individual influence on the ΔKth versus R curves. This modelling work shows that the individual ΔKth versus R curves are primarily dependent on the Kop behavior of the respective material. Further, it is shown that the threshold ΔKT is a constant value, independent of any particular cyclic loading condition. In the third part of the paper, the ΔKeff concept is applied to the experimental results obtained in the first part. Using either experimentally or semi-empirically determined Kop functions and the measured ΔKT values, the ΔKth versus R curves of the three materials investigated were accurately reconstructed. It follows that the ΔKth versus R curves of the individual materials are the natural consequence of the driving force for fatigue crack propagation, namely ΔKeff  相似文献   

4.
Most of the previous parameters that utilized as a crack driving force were established in modifying the parameter Kop in Elber's effective SIF range ΔKeff(=Kmax?Kop). However, the parameters that replaced the traditional parameter Kop were based on different measurements or theoretical calculations, so it is difficult to distinguish their differences. This paper focuses on the physical meaning of compliance changes caused by plastic deformation at the crack tip; the tests were carried out under different amplitude loading for structural steel. Based on these test results, differences of several parameter ΔKeff in literature are analysed and an improved two‐parameter driving force ΔKdrive(=(Kmax)nK)1‐n) has been proposed. Experimental data for several different types of materials taken from literature were used in the analyses. Presented results indicate that the ΔKdrive parameter was equally effective or better than ΔK(=Kmax?Kmin), ΔKeff(=Kmax?Kop) and ΔK*(= (Kmax)αK+)1?α) in correlating and predicting the R‐ratio effects on fatigue crack growth rate.  相似文献   

5.
Crack closure is analyzed using an energy approach whereby it is shown that crack closure does not completely shield the input mechanical energy to the crack tip at a load below the crack opening load P op if the compliance below P op is non-zero. An equivalent shielding stress intensity range is defined by the energy release rate against crack closure. From this energy standpoint, the true effective stress intensity range should be defined as K eff=K maxK op, where is the shielding factor. The conventional definition (K eff=K maxK op) is equivalent to the new definition only when the compliance below P op is zero such that =1, i.e., for a fully closed crack. The corrected K eff is found to be effective in correlating fatigue crack growth rates (FCGRs) generated in 8090-T8771 aluminum-lithium alloy with and without crack closure. In contrast, the conventional K eff fails to reconcile the FCGR data within an acceptable scatter band.The Canadian Government's right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

6.
Abstract— The influence of age-hardening on the middle and low crack growth rates of a 7075 Al alloy is studied in vacuum. A transition in fracture surfaces morphology and crack growth curves is observed with the T 651 and T 7351 treatments in the near-threshold regime. Measurements of crack closure show its dependance on surfaces roughness and explain the lack of dependance of ΔKth with load ratio, except for the T 7351 alloy. An equation of crack growth rate to the fourth power of ΔKeff is in good agreement only with the crack propagation curves obtained for microstructure with an homogeneous deformation mode.  相似文献   

7.
This paper proposes a local stress concept to evaluate the fretting fatigue limit for contact edge cracks. A unique S–N curve based on the local stress could be obtained for a contact edge crack irrespective of mechanical factors such as contact pressure, relative slip, contact length, specimen size and loading type. The analytical background for the local stress concept was studied using FEM analysis. It was shown that the local stress uniquely determined the ΔK change due to crack growth as well as the stress distribution near the contact edge. The condition that determined the fretting fatigue limit was predicted by combining the ΔK change due to crack growth and the ΔKth for a short crack. The formation of a non‐propagating crack at the fatigue limit was predicted by the model and it was experimentally confirmed by a long‐life fretting fatigue test.  相似文献   

8.
FATIGUE BEHAVIOR OF A RAIL STEEL   总被引:1,自引:0,他引:1  
The fatigue behavior of a hot-rolled, control-cooled, plain carbon eutectoid rail steel has been characterized. The data include monotonic and cyclic stress-strain curves, low cycle fatigue data and near-threshold fatigue crack growth rate behavior in air and in vacuo. The effects of environment and mean stress on the near-threshold fatigue crack growth rates of rail steel are significant. At a low stress ratio (R), ΔKo is lower in vacuum (7 MPa √m) than in moist air (10 MPa √m). At high R, ΔKo is higher in vacuum (6 MPa √m) than in air (4 MPa √m). The beneficial effect of moist air on FCGR at low ΔK and low R is attributed to an increase in closure due to fracture surface roughness and oxide film.  相似文献   

9.
An assessment of the effects of microstructure on room temperature fatigue threshold and crack propagation behaviour has been carried out on microstructural variants of U720Li, i.e. as‐received U720Li, U720Li‐LG (large grain variant) and U720Li‐LP (large intragranular coherent γ′ variant). Fatigue tests were carried out at room temperature using a 20 Hz sinusoidal cycling waveform at an R‐ratio = 0.1 on 12.5 mm × 12.5 mm square cross‐section SENB specimens with a 60° starter notch. U720Li‐LG showed the highest threshold ΔKKth), whilst U720Li‐LP showed the lowest ΔKth value. U720Li‐LP also showed higher crack growth rates in the near‐threshold regime and at high ΔK (although at higher ΔK levels the difference was less marked). Crack growth rates of U720Li and U720Li‐LG were relatively similar both in the near‐threshold regime and at high ΔK. The materials showed crystallographic stage I type crack growth in the near‐threshold regime, with U720Li showing distinct crystallographic facets on the fracture surface, while U720Li‐LG and U720Li‐LP showed mostly microfacets and a lower proportion of large facets. At high ΔK, crack growth in the materials becomes flat and featureless indicative of stage II type crack growth. The observed fatigue behaviour, which is an effect of the combined contributions of intrinsic and extrinsic crack growth resistances, is rationalized in terms of the microstructural characteristics of the materials. Enhanced room temperature fatigue threshold and near‐threshold long crack growth resistance are seen for materials with larger grain size and higher degree of planar slip which may be related to increased extrinsic crack growth resistance contributions from crack tip shielding and roughness‐induced crack closure. Differences in the deformation behaviour, either homogeneous or heterogeneous due to microstructural variation in this set of materials may provide approximately equivalent intrinsic crack growth resistance contributions at room temperature.  相似文献   

10.
Fatigue crack growth (fcg) behavior of cold-worked and stress relieved Zr–2.5 Nb was studied in the longitudinal (with and without hydrides) and transverse direction at ambient temperature and load ratio of 0.1 using compact tension samples. Fatigue loading in the transverse direction (distribution of both hard and soft grains) showed facet formation on the fracture surface and the highest ΔKth whereas loading in the longitudinal direction (distribution of primarily soft grains) showed no facet formation and a lower ΔKth. Hydrided Zr–2.5 Nb loaded in the transverse direction showed large facets with the lowest ΔKth. Texture influenced fcg at low ΔK but not at higher ΔK.  相似文献   

11.
The near threshold fatigue crack growth behavior of alloy 718 was studied in air and helium environments at room temperature and at 538°C. Tests were performed at 100 Hz and at load ratios of 0.1 and 0.5. At room temperature and at 538°C, the ΔKth values in helium were lower than in air. The ΔKth values in air decreased with increasing load ratio. These results can be explained with a model that involves the accumulation of oxide in the crack which enhances crack closure. In the air tests, the oxide build-up on the fatigue fracture surfaces at ΔKth was of the order of magnitude as the crack tip opening displacement. In the helium tests, no significant build-up of oxide on the fracture surface at threshold was found.  相似文献   

12.
The opening stresses of a crack emanating from an edge notch in a 1045 quenched and tempered steel specimen were measured under two different Society of Automotive Engineers (SAE) standard service load histories having different average mean stress levels. The two spectra are the Grapple Skidder history (GSH), which has a positive average mean stress, and the Log Skidder history (LSH), which has a zero average mean stress. To capture the behaviour of the crack opening stress in the material, the crack opening stress levels were measured at 900X using an optical video microscope, at frequent intervals for each set of histories scaled to two different maximum stress ranges.A crack growth analysis based on a fracture mechanics approach was used to model the fatigue behaviour of the steel specimens for the given load spectra and stress ranges. Crack growth analysis was based on an effective strain‐based intensity factor, a crack growth rate curve obtained during closure‐free loading cycles and a local notch strain calculation based on Neuber's rule.The crack opening stress (Sop) was modelled and the model was implemented in a fatigue notch model, and the fatigue lives of the specimens under the two different spectra scaled to several maximum stress levels were estimated. The average measured crack opening stresses were between 6 and 12% of the average calculated crack opening stresses. In the interest of simplifying the use of Sop in design, the average Sop was correlated with the frequency of occurrence of the cycle reducing the Sop to the average crack opening stress level. The use of an Sop level corresponding to the cycle causing a reduction in Sop to a level reached once per 10 cycles gave a conservative estimate of average crack opening stress for all the histories.  相似文献   

13.
The very high cycle fatigue properties of spring steel 60SiCrV7 for automotive suspension system with different hydrogen contents were studied by using ultrasonic fatigue testing and fatigue crack growth testing. The results show that the S–N curves exhibit continuous drop of fatigue lives and no obvious horizontal line exists. Similar fracture surface features were observed for all the specimens that failed mainly from internal inclusions with surrounding granular bright facet (GBF). Fatigue strength decreases remarkably with increasing hydrogen content. The applied stress intensity factor range at the periphery of GBF ΔKGBF is approximately proportional to 1/3 power of the square of GBF area. The average values of ΔKGBF for uncharged specimens are close to crack growth threshold ΔKth, which indicates that ΔKGBF could be regarded as the threshold value governing the beginning of stable fatigue crack propagation. The increase of hydrogen content tends to reduce ΔKGBF.  相似文献   

14.
Fatigue tests on material containing small defects were performed under a wide range of mean stress for three grades of steels with different hardness. The ΔKth of small defects had a peculiar dependency on material hardness and mean stress, which was quite different from those of long cracks or plain specimens. The crack closure of short cracks was measured. It was shown that the formation of the crack closure was affected by the material hardness and mean stress. This behaviour of crack closure resulted in characteristic fatigue limit properties of materials containing small defects.  相似文献   

15.
Crack closure is the most used mechanism to model thickness and load interaction effects on fatigue crack propagation. But assuming it is the only mechanism is equivalent to suppose that the rate of fatigue crack growth da/dN is primarily dependent on ΔKeff=KmaxKop, not on ΔK. But this assumption would imply that the normal practice of using da/dN×ΔK curves measured under plane-stress conditions (without considering crack closure) to predict the fatigue life of components working under plane-strain could lead to highly non-conservative errors, because the expected fatigue life of “thin” (plane-stress dominated) structures could be much higher than the life of “thick” (plane-strain dominated) ones, when both work under the same stress intensity range and load ratio. However, crack closure cannot be used to explain the overload-induced retardation effects found in this work under plane-strain, where both crack arrest and delays were associated to an increase in ΔKeff. These results indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be reviewed.  相似文献   

16.
Abstract— It is well known that for very short cracks the stress intensity factor K is not a suitable parameter to estimate the stress level over the small but finite Stage II process zone activation region of size rs near the crack tip, within which crack growth events take place. A critical appreciation of the reasons for the limitations on the applicability of ΔK as a fatigue crack propagation (FCP) parameter, when the crack length a is of the same order of magnitude or smaller than the size of the ‘fatigue-fracture activation region’, rs is presented. As an alternative to ΔK the range Δσs of the cyclic normal stress at a point situated at the fixed distance s=rs/2, ahead of the crack tip, inside the fatigue-fracture activation region, is proposed. It is observed that the limitation on the use of ΔK when the crack is short, is mathematical (and not physical) but this inconvenience is easily circumvented if the stress Δσs at the prescribed distance is used instead of ΔK since nowadays Δσs can be obtained numerically by using finite element methods (FEM). It follows that the parameter Δσs is not restricted by the mathematical limitations on ΔK and so it would seem that there is, a priori, no reason why the validity of the parameter Δσs cannot be extended to short cracks. It is shown that if the Paris law is expressed in terms of Δσs (πrrs)½ instead of ΔK the validity of the modified Paris law can be extended to short cracks. A coherent estimate of the value of the fatigue-fracture activation region rs is derived in terms of the fatigue limit ΔσFL obtained from S-N tests and of the threshold value ΔKth obtained from tests on long cracks where both relate to Stage II crack growth that ends in failure, namely, rs= (ΔKth/ΔσFL)2/π. An overall, threshold diagram is presented based on the simple criterion that, for sustained Stage II FCP, Δσs must be greater than ΔσFL. The study is based on a simple continuum mechanics approach and its purpose is the investigation of the suitability of both ΔK and Δσs to characterise the crack driving force that activates complex fracture processes at the microstructure's scale. The investigation pertains to conditions that lead to the ultimate failure of the component at values of Δσs > ΔσFL.  相似文献   

17.
Recent interest in the constant Kmax (Kcmax) threshold testing procedure has resulted in a more in-depth study of the influence of Kmax level on fatigue response and ΔKth in aluminium alloys. Under Rc= 0.1 conditions, which cause large amounts of closure, ΔKth levels were typically 2 to 4 Mpam. However, under Kcmax test procedures, associated with no measurable closure at threshold, ΔKth was typically 1 Mpam. A slight Kcmax level effect on ΔKth was observed at high Kmax values for some of the alloys, and was deemed to be a pure mean stress effect, separate from closure arguments.  相似文献   

18.
High-cycle fatigue tests with an evaluation of fatigue limit were carried out on large model components of bars with press fitted hubs of diameter 63/59 mm. Bars were made of three railway axle steels EA1N, EA4T and 34CrNiMo6 with considerable different strength from 586 MPa to 1041 MPa, respectively. Detection and measurement of crack growth under hubs by ultrasonic method was performed during the tests. In spite of the differences in strength and alloying of tested bars, differences in mean value of fatigue limit were not significant. This result was connected with specific damage mechanism and microcracks initiation under hubs with fretting effects. Short fatigue crack growth under hubs occurred at stress intensity factor range ΔK considerably bellow threshold value ΔKth of long cracks. Simultaneous growth of main cracks from more than one point of surface circumferential area under hub was quite frequently observed.  相似文献   

19.
Threshold for Fatigue Crack Propagation: Experimental Procedure, Characterizing and Influencing Parameters For the determination of a fatigue crack propagation threshold there exists no “Standard” or other generally accepted experimental procedure. The threshold behaviour of “long” cracks can be characterized by threshold ΔKth determination as a function of R as well as a function of Kmax. The experimental determination of ΔKth with constant Kmax is simpler and a plot of the results versus Kmax represents the threshold behaviour of a material more accurate. The whole threshold behaviour is characterized by three parameters. These three parameters can be obtained with relatively little experimental expenditure. The influence of certain conditions, i. e. material, microstructure, environment, ect., on the threshold ΔKth are discussed. It seems that for a particular material and environment only two of these parameters can be considered as material properties. Test results show that with large change of amplitude ΔK fatigue cracks can grow still at ΔK smaller than ΔKth. But after some growth, fatigue crack propagation ceases.  相似文献   

20.
The growth behaviour of small fatigue cracks has been investigated in a low carbon steel under axial loading at the stress ratios R of –1 (tension-compression) and 0 (pulsating-tension). Crack closure was measured to evaluate the effects of stress ratio and stress level on small crack growth. Except for the accelerated growth at stress levels close to the yield stress of the material, at R=–1 small cracks grow faster than large cracks below a certain crack length, but at R= 0 the crack growth rates for small cracks are coincident with those for large cracks in the whole region of crack length investigated. The critical crack length, 2cc, above which the growth behaviour of small cracks is similar to that of large cracks depends on stress ratio, being 1–2 mm at R=–1 and smaller than 0.7 mm at R=0. The 2cc value at R=–1 agrees with that obtained under rotating bending (R=–1). The small crack data are closely correlated with large crack growth rates in terms of the effective stress intensity range, ΔKeff; thus ΔKeff is found to be a characterizing parameter for small crack growth including the growth at the higher stress levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号