共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
结合金属热加工过程的冶金学原理,基于非均匀分布的位错密度场,建立了动态再结晶二维元胞自动机模型(Cellular Automaton),并对不同应变速率和不同变形温度条件下的动态再结晶过程进行了模拟。结果表明:动态再结晶存在明显的孕育期;再结晶晶核优先在晶界处产生;提高变形温度或者降低应变速率均能促进动态再结晶的进行。 相似文献
3.
4.
5.
6.
为了实现对Cr8钢热变形过程中微观组织的预测及控制,采用Gleeble-1500D热模拟试验机对Cr8钢进行了热压缩试验,研究了Cr8钢在变形温度为900~1200℃、应变速率为0.005~5 s~(-1)条件下的动态再结晶行为。基于试验数据,通过计算得到了Cr8钢的再结晶热激活能,建立了Cr8钢的动态再结晶元胞自动机模型并采用该模型模拟了Cr8钢动态再结晶过程。结果表明:Cr8钢峰值应力随着变形温度降低、应变速率增大而增加;经过试验验证,所建立的元胞自动机模型模拟的流变应力曲线、微观组织形貌及平均晶粒尺寸均具有较高的精度;Cr8钢动态再结晶百分数随着应变的增加而增加,且变形温度越高,发生动态再结晶的孕育期越短。 相似文献
7.
8.
9.
10.
本文建立了三维元胞自动机(3D-CA)模型,通过热压缩试验和电子背散射衍表征技术(EBSD),对AZ31镁合金在热变形过程中的微观组织演化规律进行可视化和定量预测。根据试验得出的真应力-应变曲线,确定了3D-CA模型参数在试验条件下的取值,建立了模型参数与变形条件(应变、变形温度和应变速率)之间的关系。利用所建立的3D-CA模型,对AZ31镁合金在热变形过程中的流动行为和微观组织演化进行模拟和讨论。结果表明:再结晶体积分数随着应变的增大而增加,随着变形温度的增大或应变速率降低而增大,提高应变速率或降低温度可以细化再结晶晶粒。模拟结果与实验结果吻合较好,相对误差值在4.5%-16.2%之间,所建立的3D-CA模型能够较准确地预测镁合金AZ31的微观组织演化。 相似文献
11.
12.
13.
14.
采用多相场(Multi-phase-field,MPF)模型模拟动态再结晶晶粒的生长过程,并用Kocks-Mecking(KM)方程模拟其力学行为。用热力模拟机对SA508-3钢进行了不同温度和应变速率下的热压缩试验,从热压缩流动应力-应变曲线中提取SA508-3钢动态再结晶特征参数并用于计算动态再结晶模型参数。利用所得参数对SA508-3钢的动态再结晶过程进行了多相场模拟,预测了热塑性变形过程中的组织演变和真应力-真应变曲线,与试验结果吻合较好。试验和数值结果均表明,流动应力随应变速率的增大及变形温度的降低而增大。本文的方法可用于研究其它材料的动态再结晶行为,为优化热锻工艺提供指导。 相似文献
15.
16.
采用Gleeble-1500D热力模拟压缩试验机,研究P92锻态料在温度900℃~1300℃、应变速率0.5s-1~25s-1、变形程度50%条件下的热变形行为,分析热变形参数对应力-应变曲线、动态再结晶组织演变规律和机制的影响,获得了动态再结晶分数和动态再结晶晶粒尺寸。结果表明,P92钢动态软化机制有动态回复、不连续动态再结晶和几何动态再结晶3种方式。动态再结晶分数随温度的升高而增大,且随着应变速率的增大,发生不连续动态再结晶的温度范围扩大。采用提高热变形温度和高应变速率的改进工艺,可获得P92钢优良的组织和性能。 相似文献
17.
采用光学显微镜、SEM/EBSD和组织定量分析技术研究AZ61镁合金在623 K、3×10-5~3×10-1 s-1下单向压缩时变形和动态再结晶行为。结果表明:AZ61镁合金的流变应力和动态再结晶行为强烈地受到应变速率的影响;随着应变速率的提高,稳态流变应力对应变速率的敏感性逐渐减弱,而峰值应力对应变速率的敏感性却呈先减弱后又显著增强的趋势。提高应变速率可加快动态再结晶进程,但高速变形初期产生更多的粗大{1012}孪晶,不利于完全再结晶而导致稳态时的再结晶体积分数反而较低;在中低应变速率下动态再结晶以晶界弓出形核为主,而在高应变速率下则主要通过孪晶分割来进行;由应变速率引起变形机制的变化是导致不同动态再结晶行为的原因。 相似文献