首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many applications, we need to find a minimum cost partition of a network separating a given pair of nodes. A classical example is the Max-Flow Min-Cut Theorem, where the cost of the partition is defined to be the sum of capacities of arcs connecting the two parts. Other similar concepts such as minimum weighted sparsest cut and flux cut have also been introduced. There is always a cost associated with a cut, and we always seek the min-cost cut separating a given pair of nodes. A natural generalization from the separation of a given pair is to find all minimum cost cuts separating all pairs of nodes, with arbitrary costs associated with all 2n–1 — 1 cuts. In the present paper, we show thatn — 1 minimum cost cuts are always sufficient to separate all pairs of nodes.A further generalization is to considerk-way partitions rather than two-way partitions. An interesting relationship exists betweenk-way partitions, the multicommodity flow problem, and the minimum weighted sparsest cut. Namely, if the staturated arcs in a multicommodity flow problem form ak-way partition (k 4), then thek-way partition contains a two-way partition. This two-way partition is the minimum weight sparsest cut.This work is supported in part by the NSF under Grant MIP-8700767 and micro program under Grants 506205 and 506215, Intergraph, and Data General.  相似文献   

2.
We show in this note that the equation αx1 + #x22EF; +αxp?ACβy1 + α +βyq where + is an AC operator and αx stands for x+...+x (α times), has exactly $$\left( { - 1} \right)^{p + q} \sum\limits_{i = 0}^p {\sum\limits_{j = 0}^q {\left( { - 1} \right)^{1 + 1} \left( {\begin{array}{*{20}c} p \\ i \\ \end{array} } \right)\left( {\begin{array}{*{20}c} q \\ j \\ \end{array} } \right)} 2^{\left( {\alpha + \begin{array}{*{20}c} {j - 1} \\ \alpha \\ \end{array} } \right)\left( {\beta + \begin{array}{*{20}c} {i - 1} \\ \beta \\ \end{array} } \right)} } $$ minimal unifiers if gcd(α, β)=1.  相似文献   

3.
Dr. J. Rokne 《Computing》1979,21(2):159-170
In computing the range of values of a polynomial over an intervala≤x≤b one may use polynomials of the form $$\left( {\begin{array}{*{20}c} k \\ j \\ \end{array} } \right)\left( {x - a} \right)^j \left( {b - x} \right)^{k - j} $$ called Bernstein polynomials of the degreek. An arbitrary polynomial of degreen may be written as a linear combination of Bernstein polynomials of degreek≥n. The coefficients of this linear combination furnish an upper/lower bound for the range of the polynomial. In this paper a finite differencelike scheme is investigated for this computation. The scheme is then generalized to interval polynomials.  相似文献   

4.
Gábor Wiener 《Algorithmica》2013,67(3):315-323
A set system $\mathcal{H} \subseteq2^{[m]}$ is said to be separating if for every pair of distinct elements x,y∈[m] there exists a set $H\in\mathcal{H}$ such that H contains exactly one of them. The search complexity of a separating system $\mathcal{H} \subseteq 2^{[m]}$ is the minimum number of questions of type “xH?” (where $H \in\mathcal{H}$ ) needed in the worst case to determine a hidden element x∈[m]. If we receive the answer before asking a new question then we speak of the adaptive complexity, denoted by $\mathrm{c} (\mathcal{H})$ ; if the questions are all fixed beforehand then we speak of the non-adaptive complexity, denoted by $\mathrm{c}_{na} (\mathcal{H})$ . If we are allowed to ask the questions in at most k rounds then we speak of the k-round complexity of $\mathcal{H}$ , denoted by $\mathrm{c}_{k} (\mathcal{H})$ . It is clear that $|\mathcal{H}| \geq\mathrm{c}_{na} (\mathcal{H}) = \mathrm{c}_{1} (\mathcal{H}) \geq\mathrm{c}_{2} (\mathcal{H}) \geq\cdots\geq\mathrm{c}_{m} (\mathcal{H}) = \mathrm{c} (\mathcal{H})$ . A group of problems raised by G.O.H. Katona is to characterize those separating systems for which some of these inequalities are tight. In this paper we are discussing set systems $\mathcal{H}$ with the property $|\mathcal{H}| = \mathrm{c}_{k} (\mathcal{H}) $ for any k≥3. We give a necessary condition for this property by proving a theorem about traces of hypergraphs which also has its own interest.  相似文献   

5.
A. M. Urbani 《Calcolo》1976,13(4):369-376
In this paper a procedure for the acceleration of the convergence is given. It allows the doubling of the order of the multistep methods for the numerical solution of the systems of ordinary differential equations: $$Y' = F(x,Y); Y_0 = Y(x_0 ) \begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \in [a,b]$$ whereY andF(x,Y) aret-vectors.  相似文献   

6.
F. Costabile 《Calcolo》1973,10(2):101-116
For the numerical integration of the problem with initial value $$y' = f(x,y),y(x_0 ) = y_0 ,\begin{array}{*{20}c} {\begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \in [a,b],} \\ \end{array} $$ the pseudo R. K. methods of second kind are taken again and approximations are drawn, that in particular casef(x, y)≡f(x) are reduced to quadrature formulae of Radau and Lobatto. The limits of the trancation's error and the stability's intervals of the pseudo R. K. methods of the first and second species with the approximations of the same order of R. K. are determined and compared. At the end of that, a numerical example is taken.  相似文献   

7.
H. H. Gonska  J. Meier 《Calcolo》1984,21(4):317-335
In 1972 D. D. Stancu introduced a generalization \(L_{mp} ^{< \alpha \beta \gamma > }\) of the classical Bernstein operators given by the formula $$L_{mp}< \alpha \beta \gamma > (f,x) = \sum\limits_{k = 0}^{m + p} {\left( {\begin{array}{*{20}c} {m + p} \\ k \\ \end{array} } \right)} \frac{{x^{(k, - \alpha )} \cdot (1 - x)^{(m + p - k, - \alpha )} }}{{1^{(m + p, - \alpha )} }}f\left( {\frac{{k + \beta }}{{m + \gamma }}} \right)$$ . Special cases of these operators had been investigated before by quite a number of authors and have been under investigation since then. The aim of the present paper is to prove general results for all positiveL mp <αβγ> 's as far as direct theorems involving different kinds of moduli of continuity are concerned. When applied to special cases considered previously, all our corollaries of the general theorems will be as good as or yield improvements of the known results. All estimates involving the second order modulus of continuity are new.  相似文献   

8.
LetK be a field and letL ∈ K n × n [z] be nonsingular. The matrixL can be decomposed as \(L(z) = \hat Q(z)(Rz + S)\hat P(z)\) so that the finite and (suitably defined) infinite elementary divisors ofL are the same as those ofRz + S, and \(\hat Q(z)\) and \(\hat P(z)^T\) are polynomial matrices which have a constant right inverse. If $$Rz + S = \left( {\begin{array}{*{20}c} {zI - A} & 0 \\ 0 & {I - zN} \\ \end{array} } \right)$$ andK is algebraically closed, then the columns of \(\hat Q\) and \(\hat P^T\) consist of eigenvectors and generalized eigenvectors of shift operators associated withL.  相似文献   

9.
We describe an extension to our quantifier-free computational logic to provide the expressive power and convenience of bounded quantifiers and partial functions. By quantifier we mean a formal construct which introduces a bound or indicial variable whose scope is some subexpression of the quantifier expression. A familiar quantifier is the Σ operator which sums the values of an expression over some range of values on the bound variable. Our method is to represent expressions of the logic as objects in the logic, to define an interpreter for such expressions as a function in the logic, and then define quantifiers as ‘mapping functions’. The novelty of our approach lies in the formalization of the interpreter and its interaction with the underlying logic. Our method has several advantages over other formal systems that provide quantifiers and partial functions in a logical setting. The most important advantage is that proofs not involving quantification or partial recursive functions are not complicated by such notions as ‘capturing’, ‘bottom’, or ‘continuity’. Naturally enough, our formalization of the partial functions is nonconstructive. The theorem prover for the logic has been modified to support these new features. We describe the modifications. The system has proved many theorems that could not previously be stated in our logic. Among them are:
  • ? classic quantifier manipulation theorems, such as $$\sum\limits_{{\text{l}} = 0}^{\text{n}} {{\text{g}}({\text{l}}) + {\text{h(l) = }}} \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{g}}({\text{l}})} + \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{h(l)}};} $$
  • ? elementary theorems involving quantifiers, such as the Binomial Theorem: $$(a + b)^{\text{n}} = \sum\limits_{{\text{l = }}0}^{\text{n}} {\left( {_{\text{i}}^{\text{n}} } \right)} \user2{ }{\text{a}}^{\text{l}} {\text{b}}^{{\text{n - l}}} ;$$
  • ? elementary theorems about ‘mapping functions’ such as: $$(FOLDR\user2{ }'PLUS\user2{ O L) = }\sum\limits_{{\text{i}} \in {\text{L}}}^{} {{\text{i}};} $$
  • ? termination properties of many partial recursive functions such as the fact that an application of the partial function described by $$\begin{gathered} (LEN X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F ({\rm E}QUAL X NIL) \hfill \\ {\rm O} \hfill \\ (ADD1 (LEN (CDR X)))) \hfill \\ \end{gathered} $$ terminates if and only if the argument ends in NIL;
  • ? theorems about functions satisfying unusual recurrence equations such as the 91-function and the following list reverse function: $$\begin{gathered} (RV X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F (AND (LISTP X) (LISTP (CDR X))) \hfill \\ (CONS (CAR (RV (CDR X))) \hfill \\ (RV (CONS (CAR X) \hfill \\ (RV (CDR (RV (CDR X))))))) \hfill \\ X). \hfill \\ \end{gathered} $$
  •   相似文献   

    10.
    There are two well-known, elegant, compact, and efficiently computed representations of selected minimum edge cuts in a weighted, undirected graphG=(V, E) withn nodes andm edges: at one extreme, the Gomory-Hu cut tree [12] represents minimum cuts, one for each pair of nodes inG; at the other extreme, the Picard-Queyranne DAG [24] represents all the minimum cuts between a single pair of nodes inG. The GH cut tree is constructed with onlyn–1 max-flow computations, and the PQ DAG is constructed with one max-flow computation, plusO(m) additional time. In this paper we show how to marry these two representations, getting the best features of both. We first show that we can construct all DAGs, one for each fixed pair of nodes, using onlyn–1 max-flow computations as in [12], plusO(m) time per DAG as in [24]. This speeds up the obvious approach by a factor ofn. We then apply this approach to an unweighted graphG, to find all the edge-connectivity cuts inG, i.e., cuts with capacity equal to the connectivity ofG. Matula [22] gave a method to find one connectivity cut inO(nm) time; we show thatO(nm) time suffices to represent all connectivity cuts compactly, and to list all of them explicitly. This improves the previous best time bound ofO(n 2 m) [3] for listing the connectivity cuts. The connectivity cuts are central in network reliability calculations. We then show how to find all pairs of nodes that are separated by at least one connectivity cut inO(nm) time.Research was partially supported by Grant CCR-8803704 from the National Science Foundation.  相似文献   

    11.
    F. Costabile 《Calcolo》1971,8(1-2):61-75
    For the numerical integration of the ordinary differential equation $$\frac{{dy}}{{dx}} = F(x,y) y(x_0 ) = y_0 \begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \varepsilon [a,b]$$ a third method utilizing only two points for every step, is determined different from the analogous Runge-Kutta method employing three points; it is useless take the first step as the «pseudo Runge-Kutta method». The truncation error is given, the convergence is proved and finally a numerical exercise is given.  相似文献   

    12.
    We relate the exponential complexities 2 s(k)n of $\textsc {$k$-sat}$ and the exponential complexity $2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}$ of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ (the problem of evaluating quantified formulas of the form $\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})$ where F is a 3-cnf in $\vec{x}$ variables and $\vec{y}$ variables) and show that s(∞) (the limit of s(k) as k→∞) is at most $s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))$ . Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ running in time 2 cn with c<1. On the other hand, a nontrivial exponential-time algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ would provide a $\textsc {$k$-sat}$ solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ have nontrivial algorithms, and provide strong evidence that the hardest cases of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least n?o(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable $\textsc {$k$-cnf}$ s and the application of the Sparsification lemma.  相似文献   

    13.
    L. Rebolia 《Calcolo》1973,10(3-4):245-256
    The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

    14.
    Hierarchical hypercubes (HHC), also known as cube-connected cubes, have been introduced in the literature as an interconnection network for massively parallel systems. Effectively, they can connect a large number of nodes while retaining a small diameter and a low degree compared to a hypercube of the same size. Especially (2 m +m)-dimensional hierarchical hypercubes ( $\mathit {HHC}_{2^{m}+m}$ ), called perfect HHCs, are popular as they are symmetrical, which is a critical property when designing routing algorithms. In this paper, we describe an algorithm finding, in an $\mathit{HHC}_{2^{m}+m}$ , mutually node-disjoint paths connecting k=?(m+1)/2? pairs of distinct nodes. This problem is known as the k-pairwise disjoint-path routing problem and is one of the important routing problems when dealing with interconnection networks. In an $\mathit{HHC}_{2^{m}+m}$ , our algorithm finds paths of lengths at most 2 m+1+m(2 m+1+1)+4 in O(25m ) time, where 2 m+1 is the diameter of an $\mathit{HHC}_{2^{m}+m}$ . Also, we have shown through an experiment that, in practice, the lengths of the generated paths are significantly lower than the worst-case theoretical estimations.  相似文献   

    15.
    A Unified Approach to Approximating Partial Covering Problems   总被引:1,自引:0,他引:1  
    An instance of the generalized partial cover problem consists of a ground set U and a family of subsets ${\mathcal{S}}\subseteq 2^{U}$ . Each element e??U is associated with a profit p(e), whereas each subset $S\in \mathcal{S}$ has a cost c(S). The objective is to find a minimum cost subcollection $\mathcal{S}'\subseteq \mathcal{S}$ such that the combined profit of the elements covered by $\mathcal{S}'$ is at least P, a specified profit bound. In the prize-collecting version of this problem, there is no strict requirement to cover any element; however, if the subsets we pick leave an element e??U uncovered, we incur a penalty of ??(e). The goal is to identify a subcollection $\mathcal{S}'\subseteq \mathcal{S}$ that minimizes the cost of $\mathcal{S}'$ plus the penalties of uncovered elements. Although problem-specific connections between the partial cover and the prize-collecting variants of a given covering problem have been explored and exploited, a more general connection remained open. The main contribution of this paper is to establish a formal relationship between these two variants. As a result, we present a unified framework for approximating problems that can be formulated or interpreted as special cases of generalized partial cover. We demonstrate the applicability of our method on a diverse collection of covering problems, for some of which we obtain the first non-trivial approximability results.  相似文献   

    16.
    A C-coloured graph is a graph, that is possibly directed, where the edges are coloured with colours from the set C. Clique-width is a complexity measure for C-coloured graphs, for finite sets C. Rank-width is an equivalent complexity measure for undirected graphs and has good algorithmic and structural properties. It is in particular related to the vertex-minor relation. We discuss some possible extensions of the notion of rank-width to C-coloured graphs. There is not a unique natural notion of rank-width for C-coloured graphs. We define two notions of rank-width for them, both based on a coding of C-coloured graphs by ${\mathbb{F}}^{*}$ -graphs— $\mathbb {F}$ -coloured graphs where each edge has exactly one colour from $\mathbb{F}\setminus \{0\},\ \mathbb{F}$ a field—and named respectively $\mathbb{F}$ -rank-width and $\mathbb {F}$ -bi-rank-width. The two notions are equivalent to clique-width. We then present a notion of vertex-minor for $\mathbb{F}^{*}$ -graphs and prove that $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width are characterised by a list of $\mathbb{F}^{*}$ -graphs to exclude as vertex-minors (this list is finite if $\mathbb{F}$ is finite). An algorithm that decides in time O(n 3) whether an $\mathbb{F}^{*}$ -graph with n vertices has $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) at most k, for fixed k and fixed finite field $\mathbb{F}$ , is also given. Graph operations to check MSOL-definable properties on $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) are presented. A specialisation of all these notions to graphs without edge colours is presented, which shows that our results generalise the ones in undirected graphs.  相似文献   

    17.
    Given a graph with n vertices, k terminals and positive integer weights not larger than c, we compute a minimum Steiner Tree in $\mathcal{O}^{\star}(2^{k}c)$ time and $\mathcal{O}^{\star}(c)$ space, where the $\mathcal{O}^{\star}$ notation omits terms bounded by a polynomial in the input-size. We obtain the result by defining a generalization of walks, called branching walks, and combining it with the Inclusion-Exclusion technique. Using this combination we also give $\mathcal{O}^{\star}(2^{n})$ -time polynomial space algorithms for Degree Constrained Spanning Tree, Maximum Internal Spanning Tree and #Spanning Forest with a given number of components. Furthermore, using related techniques, we also present new polynomial space algorithms for computing the Cover Polynomial of a graph, Convex Tree Coloring and counting the number of perfect matchings of a graph.  相似文献   

    18.
    J. Rokne  T. Wu 《Computing》1983,30(3):201-211
    The centered form for real rational functions suggested by R. E. Moore [6] was extended to complex polynomials over circular complex domains in [7]. Here it is shown that the inclusion chain $$\begin{gathered} circular complex centered form evaluation \subseteq \hfill \\ Horner scheme \subseteq \hfill \\ power sum evaluation \hfill \\ \end{gathered} $$ is valid for all complex polynomials and all circular domains.  相似文献   

    19.
    F. Costabile  A. Varano 《Calcolo》1981,18(4):371-382
    In this paper a detailed study of the convergence and stability of a numerical method for the differential problem $$\left\{ \begin{gathered} y'' = f(x,y) \hfill \\ y(x_0 ) = y_0 \hfill \\ y'(x_0 ) = y_0 ^\prime \hfill \\ \end{gathered} \right.$$ has carried out and its truncation error estimated. Some numerical experiments are described.  相似文献   

    20.
    We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form: $$\begin{array}{ll}\mathbf{Some}\, a \,{\rm are} \,R-{\rm related}\, {\rm to}\, \mathbf{some} \,b;\\ \mathbf{Some}\, a \,{\rm are}\,R-{\rm related}\, {\rm to}\, \mathbf{all}\, b;\\ \mathbf{All}\, a\, {\rm are}\,R-{\rm related}\, {\rm to}\, \mathbf{some}\, b;\\ \mathbf{All}\, a\, {\rm are}\,R-{\rm related}\, {\rm to}\, \mathbf{all} \,b.\end{array}$$ Such primitives formalize sentences from natural language like ‘All students read some textbooks’. Here a, b denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号