首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电子式互感器评述   总被引:7,自引:1,他引:7       下载免费PDF全文
概述了互感器传感准确化、传输光纤化和输出数字化的基本发展趋势.以IEC标准为基础,讨论了电子式互感器的结构体系和电子式互感器与数字变电站的关系.评述了电子式互感器的各种实用化的传感方法.介绍了POSS-OCT光学电流互感器实用化的基本情况.  相似文献   

2.
刘明  李金忠  刘锐  韩晶  张书琦 《变压器》2013,50(2):24-28
介绍了电子式互感器的原理和结构,分析了各种类型电子式互感器的性能特点,并与传统互感器进行了性能对比.基于运行和检测经验,提出了电子式互感器目前存在的问题和相应的应对措施.  相似文献   

3.
1电子式互感器标准依据 IEC60044—7《电子式电压互感器》、IEC60044—8《电子式电流互感器》、IEC61850《变电站网络和系统》等标准的相继颁布,相对应的国标GB20840第七部分《电子式电压互感器》GB20840第八部分《电子式电流互感器》也已颁布实施,为电子式互感器的推广应用奠定了基础。电子式互感器必须在这些标准的规范下进行设计、制造、试验和运行。  相似文献   

4.
电子式电流互感器中的关键技术   总被引:19,自引:2,他引:17  
详细分析了IEC6 0 0 4 4 8《ElectronicCurrentTransformer》中规定的光学TA及空芯TA目前存在的关键技术问题及解决方案。运用矩阵光学理论 ,提出了采用永久磁体作为参考源应用于光学TA中的比较测量法 ,实验表明该法可实时补偿随环境因素改变的材料Verdet常数及线性双折射。还介绍了一种基于印刷电路板的空芯线圈新结构 ,其二次绕组无需手工绕制和电阻调整 ,额定电流 2 0A时 ,准确度 0 .2级 ;额定电流≥ 30 0A时 ,准确度 0 .2S级。采用低功耗电子技术后空芯TA测量准确度 0 .2级时高压侧电路功耗 <5 0mW。  相似文献   

5.
许玉香  项力恒 《电气制造》2011,(8):48-51,53
分析了电子式互感器的发展现状以及在工程应用中的优越性,对有源和无源式电子式互感器的技术性能进行了比较,对电子互感器的可靠性进行了分析,分析了电子式互感器对继电保护、测量系统和变电站自动化系统的影响,并对电子式互感器目前存在的问题提出了应对措施。  相似文献   

6.
电流互感器在电力系统的交流电测量、继电保护、电力设备检修控制等相关领域均具有十分重要的地位。目前电磁式电流互感器逐渐暴露绝缘差、抗干扰能力弱等多种缺点,而电子式电流互感器凭借自身绝缘性好、体积小、可数字化等特点有望成为未来电气领域检测电流的主要设备。本文以电子式电流互感器的研究发展现状切入,通过空心线圈电流互感器(即Rogowski线圈式电流互感器)、低功率电流互感器(LPCT)、光学电流互感器展开进行系统论述,重点分析各自的组成结构及工作原理,并对其优缺点进行总结,提出改进之处。在此基础上指出电子式电流互感器在设备供能、环境适应、传感方式等方面所面临的挑战,并从传感机制和传感材料对其未来的发展趋势做出展望。  相似文献   

7.
计及电子式电流互感器的差动保护性能分析   总被引:13,自引:2,他引:13  
电磁型电流互感器(current transducer,CT)饱和是造成差动保护误动的重要原因,为此采取的差动保护抗CT饱和措施使保护算法和判据更加复杂,可靠性降低。电子式电流互感器(electronic current transducer,ECT)具有无磁饱和等优点,可从根本上解决上述问题。文章在分析、比较基于3种不同CT特性的比率制动差动保护动作特性的基础上,给出了相应的动作区示意图,并指出采用ECT可显著提高差动保护的灵敏性;在基于全电流的采样值差动保护中,光学电流互感器具有无可比拟的优点。此外,给出了光学电流互感器与基于IEC 61850标准的光纤纵差保护装置的应用接口设计方案。  相似文献   

8.
基于电子式互感器的数字保护接口技术研究   总被引:1,自引:0,他引:1  
李澄  袁宇波  罗强 《电网技术》2007,31(9):84-87
在新一代数字化变电站自动化系统中,电子式互感器取代了传统的电磁式互感器,由合并单元与保护装置接口,完全改变了以往的数据采集方式,由此带来了保护装置设计中的新问题。文章研究了基于电子式互感器输出的信号处理及调理技术,采用PLL(phase-locked loop)同步锁相技术、基于插值的采样值计算方法,根据精确的频率测量算法实时调整与电子式互感器进行数字接口的采样频率,理论分析和工程试验结果表明,该方法可有效地对电子式互感器的数据按要求进行高精度的同步采集,可广泛应用于各类数字保护的开发和试验中。  相似文献   

9.
几种不同类型电子式电流互感器的研究与比较   总被引:9,自引:2,他引:9  
介绍并分析比较了IEC6 0 0 4 4 8《电子式电流互感器》中定义的 3种不同类型电子式电流互感器 (即光学电流互感器、低功耗电流互感器及空芯电流互感器 )的基本原理、性能及目前存在的主要问题  相似文献   

10.
随着电力系统朝着自动化、智能化和数字化方向的发展,传统的电磁式电流互感器因自身传感机理限制很难满足电力系统发展要求,研制新型电子式电流互感器成为重要的发展方向。本文主要论述了新型电子式电流互感器的工作原理、特点和国内外研究进展及应用前景。  相似文献   

11.
电子式互感器技术发展趋势分析   总被引:2,自引:0,他引:2  
介绍了几种新型电子式电流互感器和电子式电压互感器的技术原理和产品特点,指出了电流、电压互感器技术领域的发展趋势,认为在今后10年内传统的电流、电压互感器或将退出市场。建议传统互感器制造厂应适应电网智能化的要求,积极研究低功率电流互感器和低功耗电容式电压互感器,优化结构,降低成本,提高竞争力:有实力的企业应适时进入电子式电流和电压互感器技术领域,以免被淘汰出局。  相似文献   

12.
电子式互感器配置问题探讨   总被引:1,自引:0,他引:1  
针对数字化变电站建设中电子式互感器的配置问题,分析了设备的物理模型、测量品质、功率消耗、抗干扰能力和经济性等因素,提出110 kV及以上电压等级宜选用无源式电子式电流互感器和电容分压型电子式电压互感器,66 kV及以下电压等级宜选用有源式电子式电流互感器和电阻分压型电子式电压互感器;结合传统互感器的配置原则,论述了电子式互感器按间隔的配置方式并给出参考方案;鉴于已投运站点中出现的问题,建议根据不同间隔对电子式互感器选型并考虑一定的冗余配置,有助于实现数字化变电站的"弱故障化".  相似文献   

13.
电子式互感器数字接口使用常规以太网组播/广播模式进行通信,存在载波冲突、网络负载过重和广播风暴等问题.在分析了电子式互感器数字通信和VLAN技术特点的基础上,对变电站网络建设和电子式互感器数字传输帧做了一定的改进,并设计了一套基于VLAN技术的电子式互感器数字接口,使其利于互感器与二次设备利用组播/广播模式进行实时数据传输,从而提高了电子式互感器和二次设备之间通信的实时性和可靠性.  相似文献   

14.
分析比较了现有各种电子式电压互感器的原理及优缺点,结合电子式电流互感器发展趋势,提出了一种基于全光纤电子式电流互感器检测电容电流的新型电子式电压互感器.  相似文献   

15.
德国拟建的第一座"智能化变电站"是根据IEC61850标准在现有的380/110 kV变电站的基础上建造的一座拥有全数字的自动化变电站的样板工程.同时,在变电站上用的非传统互感器、数控能源开关、变压器及栓塞监督控制器等设备也被通过IEC61850通信规约标准得以检试.  相似文献   

16.
介绍了基于自励源技术的电子式电流互感器。  相似文献   

17.
对Rogowski线圈电流互感器和光学电流互感器这两种主要的电子式电流互感器进行了基本的评述.在动态测量品质方面,光学电流互感器优于Rogowski线圈电流互感器.两种电子式电流互感器都形成了实用化技术.电子式电流互感器对提高电网动态观测的准确性,对提高继电保护的动作可靠性,对于数字电力系统的建设都具有重要意义.  相似文献   

18.
电子式电流互感器研究评述   总被引:23,自引:1,他引:23       下载免费PDF全文
对Rogowski线圈电流互感器和光学电流互感器这两种主要的电子式电流互感器进行了基本的评述。在动态测量品质方面,光学电流互感器优于Rogowski线圈电流互感器。两种电子式电流互感器都形成了实用化技术。电子式电流互感器对提高电网动态观测的准确性,对提高继电保护的动作可靠性,对于数字电力系统的建设都具有重要意义。  相似文献   

19.
在介绍了数字化变电站的基础上,重点对数字化变电站中传统互感器与电子式互感器进行了对比,分析了电子式互感器的分类、组成、工作原理及现场应用。  相似文献   

20.
电子式高压电力互感器的发展现状及在电力系统中的应用   总被引:2,自引:0,他引:2  
随着电力系统朝着自动化、智能化和数字化方向的发展,传统的电磁式电流互感器因自身传感机理限制很难满足电力系统发展要求。电子式高压电力互感器取代传统的电磁式互感器已成为发展的必然趋势。笔者论述了电子式高压电力互感器的研究意义,介绍了电子式高压电力互感器的类型及发展历史和研究现状,归纳提出了混合电子式高压电力互感器的实用化问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号