首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为节省预氧化进程的能耗和时间并优化聚丙烯腈(PAN)预氧纤维的性能,用H2O2改性PAN原丝,使其提前环化。采用FTIR、XPS等方法表征不同处理温度获得的未改性和改性PAN原丝。结果表明:H2O2水溶液在60℃改性PAN原丝时,H2O2可引发氰基环化,末端环发生亚胺、烯胺互变异构,由此出现亚氰基、类芳香伯胺;改性温度越高,改性PAN原丝的亚氰基含量、共轭程度越大。在模拟稳定化过程中,改性PAN原丝的类芳香伯胺可在较低温度下引发相邻氰基环化。使用氨水(NH3H2O)作为助剂获得改性PAN原丝,与未改性PAN原丝经历相同的预氧化进程,改性后的PAN原丝能在较短时间内达到适合的预氧化程度,且PAN预氧纤维径向结构的均匀性被改善,由此获得热稳定性更高的PAN预氧纤维。   相似文献   

2.
NiSix films were deposited using chemical vapor deposition (CVD) with a Ni(PF3)4 and Si3H8/H2 gas system. The step coverage quality of deposited NiSix was investigated using a horizontal type of hot-wall low pressure CVD reactor, which maintained a constant temperature throughout the deposition area. The step coverage quality improved as a function of the position of the gas flow direction, where PF3 gas from decomposition of Ni(PF3)4 increased. By injecting PF3 gas into the Ni(PF3)4 and Si3H8/H2 gas system, the step coverage quality markedly improved. This improvement in step coverage quality naturally occurred when PF3 gas was present, indicating a strong relationship. The Si/Ni deposit ratio at 250 °C is larger than at 180 °C. It caused a decreasing relative deposition rate of Ni to Si. PF3 molecules appear to be adsorbed on the surface of the deposited film and interfere with faster deposition of active Ni deposition species.  相似文献   

3.
The title compound, (N4C6H21)·(Co(H2PO4)(HPO4)2), was prepared hydrothermally (473 K, 10 days, autogenous pressure), in the presence of the tris(2-aminoethyl)amine as organic template. Its structure is built up from a network of four membered-rings, formed by the vertex linkages between [CoO4] and [H2PO4] tetrahedra with [HPO4] moieties hanging from the Co center. Hydrogen bonds involving the cobalt phosphate units and the triply protonated amine molecule, contribute to the stability of the structure. The IR spectrum shows bands characteristic of the (N4C6H21)3+ cations and the (H2PO4) and (HPO4)2− phosphate anions. The UV-Visible-NIR spectrum confirms the tetrahedral coordination of Co2+ ions. The TGA analysis indicates that the dehydration of (N4C6H21)·(Co(H2PO4)(HPO4)2) occurs in one step. Magnetic measurements from 4.5 to 305 K show a weak antiferromagnetic character of this compound.  相似文献   

4.
The chemical preparation and crystal structure are given for a new organic-cation cyclotetraphosphate. This compound is triclinic P-1 with the following unit cell parameters: a=7.857(1) Å, b=8.877(2) Å, c=17.271(3) Å, α=93.94(1)°, β=101.75(2)°, γ=103.72(1)° V=1137.0(4) Å3, Z=1 and ρcal=1.467 g cm−3. The crystal structure has been determined and refined to R=0.037, using 6291 independent reflections. The atomic arrangement can be described by inorganic layers parallel to the (0 0 1) planes, between which the organic entities are located.  相似文献   

5.
The preparation, crystal structure, TG–DTA analysis and spectroscopy investigation are reported for the 2,5-dimethoxy phenyl ammonium cyclotetraphosphate dihydrate [2,5-(CH3O)2C6H3NH3]4P4O12·2H2O. This new compound is triclinic P with unit cell dimensions: a = 7.438(5) Å, b = 11.841(7) Å, c = 12.354(4) Å,  = 96.61(4)°, β = 98.35(4)°, γ = 102.60(6)°, Z = 1 and V = 1038.0(1) Å3. Its crystal structure has been determined and refined to R = 0.049, with 5128 independant reflections. The structure can be described by rows of P4O12 ring anions along the a axis; between these rows are located the organic groups, connected to them by hydrogen bonds.  相似文献   

6.
MgxCu3−xV2O6(OH)4·2H2O (x ∼ 1), with similar crystal structure as volborthite Cu3V2O7(OH)2·2H2O, was successfully prepared by a soft chemistry technique. The method consists of mixing magnesium nitrate and copper nitrate with a boiling solution of vanadium oxide (obtained by reacting V2O5 with few mL of 30 vol.% H2O2 followed by addition of distilled water). When ammonium hydroxide NH4OH 10% was added (pH 7.8), a green yellowish precipitate was obtained. Using X-ray powder diffraction data, its crystal structure has been determined by Rietveld refinement. Compared to volborthite, the vanadium coordination changes from tetrahedral VO4 to trigonal bipyramidal VO5, and magnesium replaces copper, preferably, in the less distorted octahedron. At 300 °C, the phase formed is similar to the high pressure (HP) monoclinic Cu3V2O8 phase. However at higher temperature, 600 °C, the phase obtained is different from known Cu3V2O8 phases.  相似文献   

7.
Tungsten nitride carbide (WNxCy) thin films were deposited by chemical vapor deposition using the dimethylhydrazido (2) tungsten complex (CH3CN)Cl4W(NNMe2) (1) in benzonitrile with H2 as a co-reactant in the temperature range 300 to 700 °C. Films were characterized using X-ray diffraction (XRD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy and four-point probe to determine film crystallinity, composition, atomic bonding, and electrical resistivity, respectively. The lowest temperature at which growth was observed from 1 was 300 °C. For deposition between 300 and 650 °C, AES measurements indicated the presence of W, C, N, and O in the deposited film. The films deposited below 550 °C were amorphous, while those deposited at and above 550 °C were nano-crystalline (average grain size < 70 Å). The films exhibited their lowest resistivity of 840 µΩ-cm for deposition at 300 °C. WNxCy films were tested for diffusion barrier quality by sputter coating the film with Cu, annealing the Cu/WNxCy/Si stack in vacuum, and performing AES depth profile and XRD measurement to detect evidence of copper diffusion. Films deposited at 350 and 400 °C (50 and 60 nm thickness, respectively) were able to prevent bulk Cu transport after vacuum annealing at 500 °C for 30 min.  相似文献   

8.
We report here the surface modification of Al alloy (AlFe1.8Zn0.8), by energetic ion streams emitted from 2.3 kJ Mather type dense plasma focus device. The samples placed at different axial and angular positions above the anode tip are irradiated for 30 shots under the optimum focusing conditions. The treated samples are analyzed by X-ray diffractometer (XRD) to investigate the changes induced in their crystalline structure. The surface morphology along with the elemental composition is investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). A Vickers micro-hardness tester is used to measure the surface hardness, and the results demonstrate a significant increase in the hardness depending on their axial and angular positions. The micro-hardness is increased 4-5 times for typical samples.  相似文献   

9.
Different compositions of [CuMoO4]x-doped Bi2Ti4O11 nanophotocatalyst (x = 0.05, 0.1, 0.5) have been prepared by chemical precursor decomposition (CPD) method using triethanolamine (TEA) and HNO3. Cu(II) is one of reactive species on the catalyst surface and Mo(VI) ion helps to generate charge compensation of lattice having poor catalytic properties. The photocatalytic properties based on the prepared samples for photodecolorization of thymol blue (TB) solutions are examined by Hg-lamp. The crystal structures of the prepared nano-powders are characterized by XRD, EDAX, UV-vis spectra, specific surface area (BET), and HRTEM analyses. The average particle size of copper molybdate-doped bismuth titanate ranges 32 ± 5 nm measured from TEM. Results show doping of copper molybdate of 5 mol% with bismuth titanate can significantly increase the photoactivity of bismuth titanate compared all the compositions studied except degussa P25 titania. The observed increased photocatalytic activity of copper molybdate-doped bismuth titanate ((CuMoO4)x(Bi2Ti4O11)1−x; CMxBT1−x) is attributed to the strong absorption of OH groups at the surface of the catalyst.  相似文献   

10.
Functionalized superparamagnetic particles were prepared by atom transfer radical polymerization of glycidyl methacrylate onto the surface of modified Fe3O4/SiOX nanoparticles. The obtained particles were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). Candida rugosa lipase was covalently immobilized on the magnetic particles in mild condition via covalent binding with a higher activity recovery. The resulting immobilized lipase had better resistance to pH and temperature inactivation in comparison to free lipase, the adaptive pH and temperature ranges of lipase were widened, and it exhibited good thermal stability and reusability.  相似文献   

11.
(Gd1−x,Eux)2O2SO4 nano-phosphors were synthesized by a novel co-precipitation method from commercially available Gd2O3, Eu2O3, H2SO4 and NaOH starting materials. Composition of the precursor is greatly influenced by the molar ratio of NaOH to (Gd1−x,Eux)2(SO4)3 (the m value), and the optimal m value was found to be 4. Fourier transform infrared spectrum (FT-IR) and thermal analysis show that the precursor (m = 4) can be transformed into pure (Gd1−x,Eux)2O2SO4 nano-phosphor by calcining at 900 °C for 2 h in air. Transmission electron microscope (TEM) observation shows that the Gd2O2SO4 phosphor particles (m = 4) are quasi-spherical in shape and well dispersed, with a mean particle size of about 30-50 nm. Photoluminescence (PL) spectroscopy reveals that the strongest emission peak is located at 617 nm under 271 nm light excitation, which corresponds to the 5D0 → 7F2 transition of Eu3+ ions. The quenching concentration of Eu3+ ions is 10 mol% and the concentration quenching mechanism is exchange interaction among the Eu3+ ions. Decay study reveals that the 5D0 → 7F2 transition of Eu3+ ions has a single exponential decay behavior.  相似文献   

12.
Structural properties of the 2,4,6-triaminopyridinium dihydrogendiphosphate dihydrate are discussed on the basis of an X-ray structure investigation. (C4H8N5)2H2P2O7·2H2O is monoclinic, C2/c, with a = 10.414(1) Å, b = 13.365(1) Å, c = 13.736(2) Å, β = 98.39(4)°, and Z = 4. The structure has been solved by a direct method and refined to a reliability R factor of 0.0375 (Rw = 0.0961) using 2751 independent reflections. The structural arrangement can be described as inorganic infinite ribbons, , spreading along the c direction; the organic groups, [C4H8N5]+, link the precedent ribbons, via their hydrogen bonds, to form a three-dimensional network. The present work, deals with crystal structure, thermal behavior and IR analysis of this new compound.  相似文献   

13.
A new inorganic-organic hybrid material based on polyoxometallate, [L-C2H6NO2]3[(PO4)Mo12O36]·5H2O, has been successfully synthesized and characterized by single-crystal X-ray analysis, elemental analysis, infrared and ultraviolet spectroscopy, proton nuclear magnetic resonance and differential thermal analysis techniques. The title compound crystallizes in the monoclinic space group, P21/c, with a = 12.4938 (8) Å, b = 19.9326 (12) Å, c = 17.9270 (11) Å, β = 102.129 (1)°, V = 4364.8 (5) Å3, Z = 4 and R1(wR2) = 0.0513, 0.0877. The most remarkable structural feature of this hybrid can be described as two-dimensional inorganic infinite plane-like (2D/∞ [(PO4)Mo12O36]3−) which forming via weak Van der Waals interactions along the z axis. The characteristic band of the Keggin anion [(PO4)Mo12O36]3− appears at 210 nm in the UV spectrum. Thermal analysis indicates that the Keggin anion skeleton begins to decompose at 520 °C.  相似文献   

14.
Oxides belonging to the families Ba3ZnTa2−xNbxO9 and Ba3MgTa2−xNbxO9 were synthesized by the solid state reaction route. Sintering temperatures of 1300°C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425°C hexagonally ordered structures were obtained for Ba3MgTa2−xNbxO9 over the entire range (0≤x≤1) of composition, while for Ba3ZnTa2−xNbxO9 the ordered structure exists in a limited range (0≤x≤0.5). The dielectric constant is close to 30 for the Ba3ZnTa2−xNbxO9 family of oxides while the Mg analogues have lower dielectric constant of ∼18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba3ZnTa2−xNbxO9; for Ba3MgTa2−xNbxO9 it varies between 12 and 14. The “Zn” compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the “Mg” analogues.  相似文献   

15.
Synthesis, crystal structure, vibrational study, 13C, 111Cd CP-MAS-NMR analysis and electrical properties of the compound [N(C3H7)4]2Cd2Cl6, are reported. The latter crystallizes in the triclinic system (space group , Z = 2) with the following unit cell dimensions: a = 9.530(1) Å, b = 11.744(1) Å, c = 17.433(1) Å, α = 79.31(1)°, β = 84.00(1)° and γ = 80.32(1)°. Besides, its structure was solved using 6445 independent reflections down to R = 0.037. The atomic arrangement can be described by alternating organic and inorganic layers parallel to the plan, made up of tetrapropylammonium groups and Cd2Cl6 dimers, respectively. In crystal structure, the inorganic layer, built up by Cd2Cl6 dimers, is connected to the organic ones through van der Waals interaction in order to build cation-anion-cation cohesion. Impedance spectroscopy study, reported in the sample, reveals that the conduction in the material is due to a hopping process. The temperature and frequency dependence of dielectric constants of the single crystal sample has been investigated to determine some related parameters to the dielectric relaxation.  相似文献   

16.
X-ray diffraction studies employing the Rietveld analysis is reported on the influence of increasing Co substitution on the structural and microstructural evolution in AB2O4 type spinel ferrites: Ni1−xCoxFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0). The specimens were synthesized by the organic precursor method. Structure refinement reveals that the pure NiFe2O4 is not an exact inverse spinel and about 11% of Ni2+ ions occupy the tetrahedral (A) sites. Increasing Co concentrations had the effect of increasing the ratio of B[Fe3+]/A[Fe3+][Fe3+]B/[Fe3+]A and gradual expansion of the ferrite unit cell. The microstructure refinement estimates that the particle size values are in the order of ∼nm, ranging from 31 to 61 nm, which gradually increase with increasing Co doping accompanied by almost negligible lattice micro strains (∼10−4). The corresponding particle size distribution for each specimen was obtained from the X-ray diffraction data from the basic assumption that the spherical nanoparticles follow the log-normal distribution. The size distribution for the pure NiFe2O4 was also estimated from transmission electron microscope and agreed well with that obtained by the diffraction data analysis.  相似文献   

17.
The three-dimensional hybrid compound Ni3(C4H4N2)3(V8O23) has been synthesized by mild hydrothermal methods under autogenous pressure at 170 °C. The structure of the phase is stable until 380 °C. The removal of the pyrazine molecules from the structure induces its collapse. The IR spectrum shows the vibration modes of the pyrazine molecule and those of the [VO4]3− groups. A UV-visible spectrum shows the characteristic bands of the Ni(II) d8-high-spin cation in a slightly distorted octahedral coordination. Magnetic measurements indicate the existence of antiferromagnetic interactions that can be fitted with a chain model to give g = 2.31, J/k = −5.3, and zJ′/k = −5.5.  相似文献   

18.
New phosphors M2(Mg, Zn)Si2O7:Mn2+ (M = Ca, Sr, Ba) were prepared by sol-gel process, and their luminescent properties in ultraviolet and vacuum ultraviolet region were investigated. The results showed that the (Ca, Sr, Ba)2MgSi2O7:Mn2+ samples did not emit any visible light; the Sr2ZnSi2O7:Mn2+ and Ca2ZnSi2O7:Mn2+ samples showed green light. The Ba2ZnSi2O7:Mn2+ sample mainly showed green light under 254 nm excitation and red light under 147 nm excitation. The different emission was due to the Mn2+ ions occupied different sites, which were excited selectively. Among the three phosphors Sr2ZnSi2O7:Mn2+ showed the highest green emission intensity, and its decay time was shorter than that of Zn2SiO4:Mn2+ under 147 nm excitation.  相似文献   

19.
Substitution effect on the crystallographic structure in Ca10−xSrx(PO4)6F2 solid solution are studied by X-ray diffraction patterns and Rietveld refinements. Full potential electronic structure calculations based on LCAO (linear combination atomic orbital) are also performed using the obtained crystallographic parameters. DOS modification and the charge transfer are estimated versus the calcium content. According to the complex impedance method, ionic conductivity changes are explained.  相似文献   

20.
The synthesis, structure and electrical and magnetic properties of (Ba,Bi)1.54Rh8O16 hollandite are discussed. The addition of Bi stabilizes the Ba-Rh hollandite, otherwise not found under our synthesis conditions. The compound crystallizes in the monoclinic space group I2/m, a = 9.425(5) Å, b = 10.425(4) Å, c = 3.160(1) Å, γ = 94.11(5). Electron diffraction and structure imaging show that the (Ba,Bi) columns along the tunnels are incommensurate with the Rh8O16 framework, and analysis of the electron diffraction and elemental analysis allow the formula to be determined as Ba1.21Bi0.33Rh8O16. The compound shows Curie-Weiss paramagnetism, and we compare its susceptibility to that of Rh2O3. Polycrystalline samples show a negative dρ/dT between 0.3 and 300 K. No superconductivity is observed down to 0.3 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号