首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A kind of new catalyst—carbonaceous catalyst—for CH4-CO2 reformation has been developed in our laboratory. The effect of both oxygen-bearing functional group such as phenolic hydroxyl, carbonyl, carboxyl, and lactonic, and ash such as Fe2O3, Na2CO3, and K2CO3 in the carbonaceous catalyst on the CH4-CO2 reforming has been investigated with a fixed-bed reactor. It has been found that the carbonaceous catalyst is an efficient catalyst on CO2-CH4 reforming. With the decrease of oxygen-bearing functional group, the catalytic activity of carbonaceous catalyst decreases quickly. The oxygen-bearing functional groups play a significant role in the carbonaceous-catalyzed CO2-CH4 reforming; the ash components in carbonaceous catalyst also have an important influence on the CO2-CH4 reforming. Fe2O3, Na2CO3, and K2CO3 in the ash can catalyze the CO2-CH4 reforming reaction; CaO has little effect on CO2-CH4 reforming reaction. CaO can catalyze the gasification between carbonaceous catalyst and CO2; Al2O3 and MgO inhibit the CO2-CH4 reforming.  相似文献   

2.
A co-precipitation method was employed to prepare Ni/Al2O3-ZrO2, Co/Al2 O3-ZrO2 and Ni-Co/Al2O3-ZrO2 catalysts. Their properties were characterized by N2 adsorption (BET), thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), temperature-programmed desorption (CO2-TPD), and temperature-programmed surface reaction (CH4-TPSR and CO2-TPSR). Ni-Co/Al2O3-ZrO2 bimetallic catalyst has good performance in the reduction of active components Ni, Co and CO2 adsorption. Compared with mono-metallic catalyst, bimetallic catalyst could provide more active sites and CO2 adsorption sites (C + CO2 = 2CO) for the methane-reforming reaction, and a more appropriate force formed between active components and composite support (SMSI) for the catalytic reaction. According to the CH4-CO2-TPSR, there were 80.9% and 81.5% higher CH4 and CO2 conversion over Ni-Co/Al2O3-ZrO2 catalyst, and its better resistance to carbon deposition, less than 0.5% of coke after 4 h reaction, was found by TGA. The high activity and excellent anti-coking of the Ni-Co/Al2O3-ZrO2 catalyst were closely related to the synergy between Ni and Co active metal, the strong metal-support interaction and the use of composite support.  相似文献   

3.
The effect of La2O3 content in Ni-La-Zr catalyst was investigated for the autothermal reforming (ATR) of CH4. The catalysts were prepared by the coprecipitation method and had a mesoporous structure. Temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) indicated that a strong interaction developed between Ni species and the support with the addition of La2O3. Thermogravimetric analysis (TGA) and H2-pulse chemisorption showed that the addition of La2O3 led to well dispersed NiO molecules on the support. Ni-La-Zr catalysts gave much higher CH4 conversion than Ni-Zr catalyst. The Ni-La-Zr containing 3.2 wt% La2O3 showed the highest activity. The optimum conditions for maximal CH4 conversion and H2 yield were H2O/CH4=1.00, O2/CH4=0.75. Under these conditions, CH4 conversion of 83% was achieved at 700 °C. In excess O2 (O2/CH4>0.88), the catalytic activity was decreased due to sintering of the catalyst.  相似文献   

4.
An investigation was made using a continuous fixed bed reactor to understand the influence of carbon deposition obtained under different conditions on CH4-CO2 reforming. Thermogravimetry (TG) and X-ray diffraction (XRD) were employed to study the characteristics of carbon deposition. It was found that the carbonaceous catalyst is an efficient catalyst in methane decomposition and CH4-CO2 reforming. The trend of methane decomposition at lower temperatures is similar to that at higher temperatures. The methane conversion is high during the initial of stage of the reaction, and then decays to a relatively fixed value after about 30 min. With temperature increase, the methane decomposition rate increases quickly. The reaction temperature has significant influence on methane decomposition, whereas the carbon deposition does not affect methane decomposition significantly. Different types of carbon deposition were formed at different methane decomposition reaction temperatures. The carbon deposition Type I generated at 900°C has a minor effect on CH4-CO2 reforming and it easily reacts with carbon dioxide, but the carbon deposition Type II generated at 1000°C and 1100°C clearly inhibits CH4-CO2 reforming and it is difficult to react with carbon dioxide. The results of XRD showed that some graphite structures were found in carbon deposition Type II.  相似文献   

5.
CO2 reforming of CH4 was performed using Ni catalyst supported on La-hexaaluminate which has been an well-known material for high-temperature combustion. La-hexaaluminate was synthesized by sol-gel method at various conditions where different amount of Ni (5–20 wt%) was loaded. Ni/La-hexaaluminate experienced 72 h reaction and its catalytic activity was compared with that of Ni/Al2O3, Ni/La-hexaaluminate shows higher reforming activity and resistance to coke deposition compared to the Ni/Al2O3 model catalyst. Coke deposition increases proportionally to Ni content. Consequently, Ni(5)/La-hexaaluminate(700) is the most efficient catalyst among various Ni/La-hexaaluminate catalysts regarding the cost of Ni in Ni(X)/La-hexaaluminate catalysts. BET surface area, XRD, EA, TGA and TPO were performed for surface characterization. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

6.
A series of Zr-doped ordered mesoporous Al2O3 with various Zr contents were synthesized by evaporation-induced self-assembly strategy and the Ni-based catalysts supported on these Al2O3 materials were prepared by impregnation method. These catalysts with large specific surface area, big pore volume, uniform pore size possess excellent catalytic performance for the low-temperature carbon dioxide reforming of methane. The activities of these catalysts were tested in carbon dioxide reforming of methane reaction with temperature increasing from 500 to 650?°C and the stabilities of these catalysts were evaluated for long time reaction at 650?°C. It was found that when Zr/(Zr?+?Al) molar ratio?=?0.5%, the Ni/0.5ZrO2–Al2O3 catalyst showed the highest activity, and exhibited superior stabilization compared to the Ni-based catalyst supported on traditional ordered mesoporous Al2O3. The “confinement effect” from mesoporous channels of alumina matrix is helpful to stabilize the Ni nanoparticles. As a promoter, Zr could stabilize the ordered mesoporous framework by reacting with Al2O3 to form ZrO2–Al2O3 solid solution. Since ZrO2 enhances the dissociation of carbon dioxide, more oxygen intermediates are given to remove the carbon formed during the reaction.  相似文献   

7.
The photo-electrochemical characterization of the hetero-system CoFe2O4/TiO2 was undertaken for the Ni2+ reduction under solar light. The spinel CoFe2O4 was prepared by nitrate route at 940 °C and the optical gap (1.66 eV) was well matched to the sun spectrum. The flat band potential (-0.21 VSCE) is more cathodic than the potential of Ni2+/Ni couple (-0.6 VSCE), thus leading to a feasible nickel photoreduction. TiO2 with a gap of 3.2 eV is used to mediate the electrons transfer. The reaction is achieved in batch configuration and is optimized with respect to Ni2+ concentration (30 ppm); a reduction percentage of 72% is obtained under sunlight, the Ni2+ reduction is strongly enhanced and follows a first order kinetic with a rate constant of 4.6×10-2 min-1 according to the Langmuir-Hinshelwood model.  相似文献   

8.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

9.
The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.  相似文献   

10.
A low-cost activated carbon (AC) was produced from the broom sorghum stalk using KOH as the chemical activating agent, and then the surface of AC was functionalized with diethanolamine to enhance CO2/CH4 selectivity. Characteristics of pristine and DEA-functionalized ACs were determined through different analyses such as Boehm’s method, BET, FT-IR, SEM, and TGA. The adsorption behavior of pure carbon dioxide and pure methane on these adsorbents was investigated in a temperature range of 288-308 K and pressure range of 0-25 bar using an apparatus based on a volumetric method. Results indicated that amine functionalization significantly improved the selectivity of CO2/CH4. The enhancement of CO2 ideal adsorption selectivity over CH4 from 1.51 for the pristine AC to 5.75 for the AC-DEA was attributed to adsorbate-adsorbent chemical interaction. The present DEA-functionalized AC adsorbent can be a good candidate for applications in natural gas and landfill gas purifications.  相似文献   

11.
The chemical and thermal structure of a Mache-Hebra burner stabilized premixed rich CH4/O2/N2 flame with additives of vapors of triphenylphosphine oxide [(C6H5)3PO], hexabromocyclododecane (C12H18Br6), and ethyl bromide (C2H5Br) was studied experimentally using molecular beam mass spectrometry (MBMS) and a microthermocouple method. The concentration profiles of stable and active species, including atoms and free radicals, and flame temperature pro.les were determined at a pressure of 1 atm. A comparison of the experimental and modeling results on the flame structure shows that MBMS is a suitable method for studying the structure of flames stabilized on a Mache-Hebra burner under near-adiabatic conditions. The relative flame inhibition effectiveness of the added compounds is estimated from changes in the peak concentrations of H and OH radicals in the flame and from changes in the flame propagation velocity. The results of the investigation suggest that place of action of the examined flame retardants is the gas phase. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 5, pp. 12–20, September–October, 2007.  相似文献   

12.
Nano-sized bismuth sulfide (Bi2S3) and titanium dioxide (TiO2) with the orthorhombic and anatase tetragonal structures, respectively, were synthesized for application as catalysts for the reduction of carbon dioxide (CO2) to methane (CH4). Four double-layered dense films were fabricated with different coating sequences—TiO2 (bottom layer)/Bi2S3 (top layer), Bi2S3/TiO2, TiO2/Bi2S3: TiO2 (1 : 1) mix, and Bi2S3: TiO2 (1 : 1) mix/Bi2S3: TiO2 (1 : 1) mix—and applied to the photoreduction of CO2 to CH4; the catalytic activity of the fabricated films was compared to that of the pure TiO2/TiO2 and Bi2S3/Bi2S3 doubled-layered films. The TiO2/Bi2S3 double-layered film exhibited superior photocatalytic behavior, and higher CH4 production was obtained with the TiO2/Bi2S3 double-layered film than with the other films. A model of the mechanism underlying the enhanced photoactivity of the TiO2/Bi2S3 double-layered film was proposed, and it was attributed in effective charge separation.  相似文献   

13.
Experiments were conducted for the hydrogenolysis of CFC-12 (CCl2F2) to CH2F2 over bimetallic palladium catalysts (Pd-Bi, Pd-Ru) supported on activated carbon. The characteristics of the bimetallic palladium catalysts were examined with ICP, XRD, TPD, TEM, and N2 physisorption/H2 chemisorption and the Pd-F formation was identified by XPS analysis. The catalytic activity of the bimetallic palladium catalyst (Pd-Bi/C, or Pd-Ru/C) was superior to that of the monometallic palladium catalyst. The bimetallic palladium catalysts showed much higher conversion rates (more than 99% of it was converted) than did the monometallic palladium catalyst (< 92%) and were deactivated to a lesser extent, even at high temperatures (>320 ‡C). The bimetallic components maintained the good dispersion of the Pd on the activated carbon support.  相似文献   

14.
Accurate prediction of phase equilibria regarding CH4 replacement in hydrate phase with high pressure CO2 is an important issue in modern reservoir engineering. In this work we investigate the possibility of establishing a thermodynamic framework for predicting the hydrate equilibrium conditions for evaluation of CO2 injection scenarios. Different combinations of equations of state and mixing rules are applied and the most accurate thermodynamic models at different CO2 concentration ranges are proposed.  相似文献   

15.
An Al2O3-ZrO2 xerogel (AZ-SG) was prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/AZ-SG catalyst was then prepared by an impregnation method, and was applied to hydrogen production by steam reforming of LNG. A nickel catalyst supported on commercial alumina (A-C) was also prepared (Ni/A-C) for comparison. The hydroxyl-rich surface of the AZ-SG support increased the dispersion of nickel species on the support during the calcination step. The formation of a surface nickel aluminate-like phase in the Ni/AZ-SG catalyst greatly enhanced the reducibility of the Ni/AZ-SG catalyst. The ZrO2 in the AZ-SG support increased the adsorption of steam onto the support and the subsequent spillover of steam from the support to the active nickel sites in the Ni/AZ-SG catalyst. Both the high surface area and the well-developed mesoporosity of the Ni/AZ-SG catalyst improved the gasification of adsorbed surface hydrocarbons in the reaction. In the steam reforming of LNG, the Ni/AZ-SG catalyst showed a better catalytic performance than the Ni/A-C catalyst. Moreover, the Ni/AZ-SG catalyst showed strong resistance toward catalyst deactivation.  相似文献   

16.
Ni/SiO2-ZrO2 catalysts with Ni loadings of 1 to 13 wt-% were prepared, characterized by elemental analysis, X-ray diffraction, N2 sorption, temperature programmed oxidation, temperature programmed reduction, and tested for their activity and stability in the dry reforming of methane with carbon dioxide at 850 °C, gas hourly space velocity of 6000 and 1800 h–1 and atmospheric pressure. The SiO2-ZrO2 support as obtained through a simple and efficient sol-gel synthesis is highly porous (A BET = 90 m2?g–1, d P = 4.4 nm) with a homogeneously distributed Si-content of 3 wt-%. No loss of Si or formation of monoclinic ZrO2, even after steaming at 850 °C for 160 h, was detectable. The catalyst with 5 wt-% Ni loading in its fully reduced state is stable over 15 h on-stream in the dry reforming reaction. If the catalyst was not fully reduced, a reduction during the early stages of dry reforming is accompanied by the deposition of up to 44 mg?g–1carbon as shown by experiments in a magnetic suspension balance. Rapid coking occurs for increased residence times and times-on-stream starting at 50 h. The Ni loading of 5 wt-% on SiO2-ZrO2 was shown to provide an optimal balance between activity and coking tendency.
  相似文献   

17.
A series of blend membranes made from the rubbery polyether block amide (Pebax®1657) and a glassy polymer, polyethersulfone (PES) or Matrimid 5218, were fabricated by solution casting with different ratios (10–40 %), in order to combine high permeability of the former with high selectivity of the latter polymer for CO2/CH4 gas separation. The membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and stress–strain tests. These blend membranes showed two distinct T g s, indicating their immiscible nature as confirmed by SEM images. However, weak intermolecular interaction between polymers, as illustrated by the FTIR results, corresponds to some degree to their compatibility and improved mechanical strength, compared to the pure Pebax®. TGA analysis revealed that addition of glassy polymer improved membranes’ thermal stability. Effect of feed pressure on membrane separation, investigated by three different pressures (4, 8, and 12 bar), indicated increased permeability for higher pressures for both CO2 and CH4. Gas separation tests also pointed to improved separation properties of the blend membranes compared to those of the neat polymers, prepared the same way.  相似文献   

18.
Nanoporous Ti30Si70MCM-41 was applied as a photocatalyst for effective reduction of CO2 to CH4. A ruthenium dye (N719) was also introduced onto the surface of Ti30Si70MCM-41 as a photosensitizer to improve its photoabsorption in the visible range. The catalytic performance of N719-photosensitized Ti30Si70MCM-41 was superior to that of the non-photosensitized Ti30Si70MCM-41 and N719-photosensitized Ti30Si70O200 nanomaterials. The photoreduction of CO2 to CH4 was remarkably improved on N719-(5 h)-photosensitized Ti30Si70MCM-41, with a production of 1,900 μmol g cat ?1 L?1 after an 8 h reaction. The results were attributed to the effective charge separation and the inhibited recombination of photogenerated electron-hole pairs on N719-photosensitized Ti30Si70MCM-41. Lastly, a model for the enhanced photoactivity over N719-photosensitized Ti30Si70MCM-41 was proposed.  相似文献   

19.
A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the comethanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and highresolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.
  相似文献   

20.
The residual gas and remained raw gas in dual gas resources polygeneration system are quite complex in components (mainly CH4, CO, and H2), and these results to the distinguished differences in combustion reaction. Experimental investigations on basic combustion characteristics of syngas referred above are conducted on a laboratory-scale combustor with flame temperature and flue gas composition measured and analyzed. Primary air coefficient (PA), total air coefficient (TA), and components of the syngas (CS) are selected as key factors, and it is found that PA dominates mostly the ignition of syngas and NO x formation, while TA affects the flue gas temperature after high temperature region and NO x formation trend to be positive as H2/CO components increase. The results provide references for industrial utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号