首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
给出了快速收敛的离散二进小渡神经网络的初始化.构造和权值确定的详细方法。并将这类小波神经网络应用于传感器的非线性校正,并给出了仿真实验结果。相对使用随机贪心算法训练的神经网络,快速收敛小波神经网络利用离散二进小波变换的便利,采用启发式的构造算法;具有构造过程复杂度低,构造完成后高度接近目标模型,训练次数少,并可有效避免陷入局部极小点的优点。有效解决了小波神经网络尺度和平移系数在训练时需对小波函数进行求导而影响网络收敛速度的问题。  相似文献   

2.
基于遗传小波神经网络的压力传感器的非线性校正研究   总被引:1,自引:0,他引:1  
为了消除压力传感器受非目标参量的影响而呈现的非线性特性,利用小波神经网络来完成压力传感器的非线性校正.利用遗传算法对小波神经网络权阈值优化,以提高网络精确度和训练速度,设计了遗传优化小波神经网络,将该网络用于压力传感器的非线性校正.仿真结果表明该方法能有效消除非目标参量对传感器输出结果的影响.压力传感器的精度和准确度都得到提高.该系统不但可以用于各类传感器的非线性校正,还可用于其它类似系统.且设计、实现简单,适于工程应用,具有实际应用价值.  相似文献   

3.
廖忠  赵宏 《自动化仪表》2005,26(3):13-14,18
研究了一种用小波神经网络对传感器非线性误差进行补偿的方法 ,给出了相应的算法和计算公式。该方法可将传感器传输特性的非线性模型改造成为与实际物理过程相一致的不失真的线性模型 ,从而使传感器的非线性误差大大减小。应用实例结果表明了该方法的有效性。  相似文献   

4.
提出应用小波神经网络实现非线性系统模型的在线建立及自校正方法.首先提出了小波网络节点库的构成方法和一种小波网络模型结构确定和权值估计方法.在此基础上运用限定记忆最小二乘法,设计小波网络自学习建模和在线校正的算法.该算法能根据系统输入输出数据自动地建立小波网络模型,并使得在线校正得到的小波神经网络在某种准则下是最优的.  相似文献   

5.
神经网络具有良好的学习特性,小波变换有良好的时频局部化性质,将二者结合在一起构成小波神经网络兼有神经网络和小波变换的优点。本文提出了解决虚拟仪器系统非线性校正问题的小波神经网络算法。最后通过一个应用实例表明,采用小波神经网络建立软校正模型,不仅可以使系统获得高精度,而且在相同的误差条件下,其收敛速度也要远远快于传统的BP神经网络。  相似文献   

6.
基于小波神经网络建立虚拟仪器非线性软校正模型   总被引:1,自引:4,他引:1  
神经网络具有良好的学习特性,小波变换有良好的时频局部化性质,将二者结合在一起构成小波神经网络兼有神经网络和小波变换的优点.本文提出了解决虚拟仪器系统非线性校正问题的小波神经网络算法.最后通过一个应用实例表明,采用小波神经网络建立软校正模型,不仅可以使系统获得高精度,而且在相同的误差条件下,其收敛速度也要远远快于传统的BP神经网络.  相似文献   

7.
在工业过程控制中,常常存在一些重要的变量难以测量,为了解决这个问题,出现了软仪表.软仪表的实质是建立被测量参数与影响该参数的其它操作参数之间的数学模型,通过计算得出此类难于测量的变量的数值.小波神经网络就是软测量的一种方法.在传统的小波神经网络的基础上进行了改进,利用小波对工业现场过来的数据进行了降噪,并使用主元分析法去除了数据的相关性.然后对处理过的数据建立小波神经网络模型,最后通过计算机仿真证实了该方法的良好的收敛速度快,不容易陷入极度最小等辨识效果.  相似文献   

8.
《工矿自动化》2015,(9):74-77
为消除电涡流传感器的非线性误差,提高其测量精度,提出了一种基于小波神经网络和遗传算法的电涡流传感器非线性补偿方法。该方法利用小波神经网络的非线性映射能力,使得传感器的输入与输出线性化,并使用遗传算法搜寻网络的最优初始值,加强网络的非线性逼近能力和收敛能力,显著提高电涡流传感器的非线性补偿效果。实验结果表明,经过补偿后,极大提高了传感器的精度,传感器输出电压最大绝对误差为15.55mV,最大相对误差为1.36%,非线性误差为0.34%。  相似文献   

9.
为了解决电容称重传感器的非线性问题,提出了补偿其非线性的小波神经网络方法。该方法以电容称重传感器实验数据为基础,通过小波神经网络训练来确定传感器非线性补偿网络。介绍电容称重传感器非线性补偿原理,分析网络的拓扑结构,给出网络参数训练方法。结果表明,采用小波神经网络进行电容称重传感器非线性补偿具有好的鲁棒性,网络训练速度快、精度高,并能在线补偿,在测试领域有实用价值。  相似文献   

10.
小波神经网络建模研究   总被引:3,自引:1,他引:2  
在利用小波神经网络进行实际建模中,对输入层权值的选取一直没有一个统一的结论,针对这一现象着重讨论了在样本点有限,样本点与样本点之间缺乏信息的情况下,输入层权值对小波神经网络逼近曲线的影响,并给出了输入层权值的一个最优选取,同时将此结论应用于对实际曲线的仿真,取得了很好的结果,因此,可知在某一实际运用中,小波神经网络输入层权值存在一个最优的解。  相似文献   

11.
基于小波变换和ART网络的手写数字识别   总被引:2,自引:0,他引:2  
由于小波变换能有效地提取字符的结构特征,自适应共振(ART)网络有很好的学习能力。将二者结合起来,用小波变换抽取特征、用自适应共振ART网络作模式分类器来识别手写数字。实验证明该方法有很高的识别率,能够有效地进行手写数字的分类,可以满足实际应用。  相似文献   

12.
基于遗传算法的小波神经网络   总被引:4,自引:0,他引:4  
介绍小波神经网络的基本原理.利用遗传算法来优化小波神经网络,达到提高逼近精度,简化网络结构,提高收敛速度的目的.通过实验将其与传统的小波神经网络进行比较,证实前者具有更优的网络结构,更高的逼近精度.  相似文献   

13.
许静  韩雷 《传感技术学报》1999,12(3):189-194
神经网络具有良好的自适应性,自组织性及很强的学习功能,小波则提供了一种去除噪声的方法,但单元基于此算法的软件往往缺少对于突发性噪声的自适应能力,本文将此二者有全,以神经网络原理和现代数学小波分析为依据,提出了基于神经网络思想的小波分析;以改进原有算法,识别工程技术测量中遇到的突发噪声。  相似文献   

14.
Fault Diagnosis Using Wavelet Neural Networks   总被引:4,自引:0,他引:4  
Qipeng  Liu  Xiaoling  Yu  Quanke  Feng 《Neural Processing Letters》2003,18(2):115-123
Wavelet neural networks are a class of neural networks consisting of wavelets. This paper presents a novel universal tool for fault diagnosis and algorithms for wavelet neural network construction are proposed. Using the model of wavelet neural networks, we can not only extract the features of system but also predict the development of the fault.  相似文献   

15.
基于神经网络的航空传感器故障检测   总被引:1,自引:0,他引:1  
用离线训练的神经网络进行导航传感器故障检测。首先,用已获得的正常飞行数据通过离线训练的方法训练神经网络并构造估计器的结构,然后用已选择好结构并训练好的神经网络作为估计器对传感器的读数进行一步预测。若预测值与传感器实际值之间的差值仅为递推误差和传感器输出噪声,则认为传感器工作正常,若相应的残差分量显著增大,则认为传感器故障。因此设计了相应的检测策略进行故障检测,以达到既避免不必要的报警、切换,又准确、及时的监测、报警。通过仿真试验验证,结果证明该方法可行。  相似文献   

16.
基于小波神经网络的电机声频故障诊断系统   总被引:2,自引:0,他引:2  
采用能量分布特征提取方法和改进的BP算法,设计了一种基于小波神经网络的故障诊断系统,并应用于电机声频诊断技术。实验表明,此系统诊断结果与实际相符,验证了该小波神经网络故障诊断系统的有效性。  相似文献   

17.
为提高小波网络运行速度,缩短小波网络的训练及运行时间,提出一种基于提升小波变换和神经网络算法的改进小波网络——提升小波网络.首先将带有明显特征的信号作为网络输入,经过权值处理输入到隐层节点进行提升小波变换处理,提取信号的低频系数作为隐层节点的输出,再经过权值化处理输入到输出层节点进行0-1输出,进而达到对信号的特征识别...  相似文献   

18.
基于小波网络和多模块网络的数字识别   总被引:2,自引:0,他引:2  
本文研究一种新的数字识别方法,这种方法用小波神经网络抽取特征、用多模块结构神经网络作模式分类器。小波分解的函数近似能力和人工神经网络的学习能力结合起来形成的小波神经网络,有着良好的特征描述性能,可用作特征抽取工具。多模块结构的神经网络将一个k类的模式分类问题转换为k个互相独立的2类分类问题。这种结构将一个复杂的分类问题化解为多个简单的分类问题,各个模块互相并联,各自负责一种模式的识别。用这种修改过的多模块结构网络的BP训练方法,可加速训练和提高训练精度,并且各模块可互相独立地进行训练。用美国NIST数字样本进行训练及测试,结果良好。这种方法可用于更广泛的平面图形识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号