首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
环己酮生产过程中苯对环己烷氧化反应的影响   总被引:2,自引:0,他引:2  
在2 L高压反应釜内,研究了环己烷无催化空气氧化生产环己酮过程中,不同浓度苯对氧化反应吸氧速度、产物组成和环己烷转化率、选择性的影响.结果表明,苯对环己烷氧化没有明显的抑制作用,基本不影响氧化吸氧速率和转化率,但对环己烷氧化的选择性有一定影响.在165 ℃反应55 min时,苯含量每增加10%,选择性约下降1%,且随着环己烷中苯含量的增加,产物中过氧化物含量下降,酸略有下降而酯有所增加,环己酮和环己醇的含量则基本不变.  相似文献   

2.
以凹凸棒石黏土为载体,采用浸渍还原和回流吸附负载Pd和AlCl3制备Pd-AlCl3-PAL加氢催化剂,并用于苯酚选择性加氢制环己酮。采用XRD、EDX、TEM对催化剂进行了表征,考察AlCl3、Pd含量以及反应时间和温度对苯酚加氢制环己酮的影响。结果表明:AlCl3的引入和Pd含量的增加可增加催化剂的活性,提高产物环己酮选择性。反应温度的提高可能导致溶剂挥发带走苯酚,其苯酚转化率下降。反应时间的延长并没有显著提高苯酚转化率,反而产生环己醇使环己酮选择性下降。适宜的反应条件为Pd含量5%,反应温度50℃,反应时间1.5h,此时催化剂活性最好,苯酚转化率为98.45%,环己酮选择性可达到94.77%。  相似文献   

3.
环己烷氧化制备环己酮和环己醇工艺研究进展   总被引:15,自引:0,他引:15  
环己酮和环己醇是重要的有机化工原料,应用十分广泛,其合成新工艺、新技术的研究和开发一直受到人们的关注.对环己烷氧化制备环己酮和环己醇的制备方法及环己烷氧化中不同催化剂的使用进行了研究,结果表明:目前工业上环己烷氧化制环己酮和环己醇的工艺普遍存在环己烷转化率低,醇酮选择性不高,能耗高,三废问题严重等.因此提高环己烷转化率及环己酮和环己醇选择性,降低原料成本,降低能耗,减少环境污染是环己烷氧化技术发展的方向.  相似文献   

4.
用十六烷基三甲基溴化铵为模板剂,水玻璃为硅源,在55℃水热合成过程中加入硝酸铁溶液,在160℃晶化48 h,合成出Fe-MCM-41分子筛。并用粉末X-射线衍射、N2吸附-脱附、红外光谱及差热-热重分析等手段进行了表征。结果表明,合成的分子筛具有良好的晶体结构,铁已经进入分子筛骨架。利用Fe-MCM-41分子筛作为催化剂,以氧气为氧源,考察了温度、时间、压力等因素对环己烷选择性氧化反应的影响。环己烷的转化率随着时间和温度的增加而增加,但压力的增加对其影响不大。在反应6 h,温度为180℃,反应压力为2.5 MPa的条件下,环己烷的转化率为14.0%,环己酮的选择性为9.5%,环己醇的选择性为90.5%。  相似文献   

5.
为实现高性能催化氧化环己烷,以高锰酸钾为锰源,通过控制高锰酸钾的浓度,利用水热法成功制备形貌可控的纳米线、纳米花球和纳米片锰氧化物负载多孔Ti电催化膜电极(nano-MnO_x/Ti),通过高分辨电子显微镜、循环伏安法和电化学交流阻抗等表征方法考察不同形貌的nano-MnO_x/Ti多孔膜电极的电催化性能。同时,以此为阳极,不锈钢网为阴极,构建电催化膜反应器(ECMR),催化氧化环己烷制备环己醇和环己酮(KA油),考察初始浓度、反应温度、停留时间和电流密度等操作参数对环己烷转化率和KA油选择性的影响。结果表明:KMnO_4浓度为5.0 mmol/L时可制得纳米线状MnO_x,由此制得的纳米线状MnO_x/Ti膜电极电化学性能最优;环己烷转化率随着初始浓度的降低和停留时间的延长而增大,随着反应温度和电流密度的增大先增大后减小;环己醇选择性随着初始浓度的降低和反应温度、停留时间、电流密度的增大而减小,而环己酮选择性随之增大;最佳操作条件为反应温度30℃、环己烷10 mmol/L、电流密度3.0 mA/cm~2、停留时间30 min,此时采用纳米线状MnO_x/Ti膜电极构建的ECMR中环己烷转化率为15.2%,环己酮选择性为81.1%,KA油总选择性大于99%.  相似文献   

6.
以凹凸棒石黏土为载体采用浸渍还原-气相沉积负载Pd和AlCl3制备了Pd-AlCl3-凹土加氢催化剂,并用于苯酚选择性加氢制环己酮。采用XRD、EDX和SEM对催化剂进行了表征,考察了AlCl3、Pd含量以及反应条件对苯酚加氢制环己酮的影响。结果表明:气相沉积法可将AlCl3均匀分散到凹凸棒石晶体表面并提高其固载量,AlCl3的引入和Pd含量的增加可增加催化剂的活性,提高产物环己酮选择性。适宜的反应条件为Pd含量5%,反应温度80℃,反应时间3h,此时催化剂活性最好,苯酚转化率为99.99%,环己酮选择性可达到100%。  相似文献   

7.
采用浸渍涂覆法制备出Mn Ox/Ti电催化膜.以Mn Ox/Ti电催化膜为阳极,以不锈钢网为阴极,构建电催化膜反应器用于催化氧化环己烷制备环己醇和环己酮;考察Mn Ox/Ti膜材料电化学性能以及膜反应器的不同操作参数对环己烷转化率、环己醇和环己酮选择性的影响.结果表明:Mn Ox/Ti膜材料的电化学性能相对Ti膜明显增强;当反应物浓度为10 mmol/L、停留时间为34.3 min、电流密度为2.9 m A/cm2时,环己烷转化率达到12.5%,环己醇的选择性为38.7%,环己酮的选择性为50.1%.  相似文献   

8.
磷酸二氢钠催化合成环己酮乙二醇缩酮的研究   总被引:1,自引:0,他引:1  
研究以磷酸二氢钠为催化剂,环己酮和乙二醇为原料合成了环己酮乙二醇缩酮,并考察了各种因素对反应的影响.实验确定了较优的反应条件为环己酮0.1mol,环己酮:乙二醇=1:1.5(mol/mol),催化剂用量为1.40g,带水剂环己烷10mL,反应回流时间180min,其产品收率达90.6%.该方法的优点是环己酮的转化率高,催化剂重复使用性能较好.  相似文献   

9.
离子交换NaY催化下的苯乙烯环氧化反应   总被引:2,自引:0,他引:2  
以不同金属离子交换的Y型分子筛(Me-NaY)为催化剂,对苯乙烯与氧气的环氧化反应进行了实验研究。采用XRD,BET对催化剂进行了表征,使用气质联用仪和气相色谱仪对产物进行了定性和定量分析。研究结果表明,Y型分子筛经离子交换后其基本骨架结构没有发生变化,反应的主要产物是环氧苯乙烷和苯甲醛。其中以Co2+交换Y型分子筛的活性最高。考察了各种条件对反应的影响,发现溶剂极性和粘度对反应的影响很大,低粘度极性溶剂对反应有利。升高反应温度能提高苯乙烯转化率,而环氧苯乙烷选择性呈下降趋势,反应时间为6 h反应已基本接近平衡。以Co2+交换Y型分子筛为催化剂,二甲基甲酰胺为溶剂,反应温度100℃,反应时间6 h的条件下,苯乙烯转化率达67.5%,环氧苯乙烷选择性达48.8%。  相似文献   

10.
针对金催化剂制备过程的复杂性和氯离子残留问题,介绍一种负载型金催化剂Au/Al2O3的制备方法和考察该催化剂在环己烷氧化中的催化性能.采用浸渍-氨洗法制备Au/Al2O3催化剂,并应用电感耦合等离子体原子发射光谱(ICP-AES)、X射线衍射(XRD)和透射电子显微镜(TEM)对其进行表征.以氧气氧化环己烷制备环己酮和环己醇为研究对象,考察金质量分数、反应温度、压力、时间等因素对催化活性的影响.结果表明,随着金质量分数增加,金颗粒增大,催化剂的活性降低,在150℃、1.5MPa条件下反应3h,Au实际质量分数为0.58%的Au/Al2O3催化剂上环己烷转化率为8.96%,环己酮、环己醇和环己基过氧化氢三者的总选择性为93.52%.此外,循环实验表明Au/Al2O3催化剂具有一定的稳定性.  相似文献   

11.
考察了氧气气氛下,活化前后分别用H2处理0.5h对Mo/HZSM-5催化剂反应活性的影响,结果表明:活化后用H2和处理后催化活性显著降低,甲烷添加O2、CO2后,于700℃时进行氧化反应,无苯生成;750℃时甲烷与O2反应在进行氧化反应的同时,有偶联反应发生,反应温度的提高使甲烷转化率与苯的选择性均有提高,但催化剂稳定性下降,可能归结为积炭增加和钼组分的挥发流失。  相似文献   

12.
在低温条件下用30%的过氧化氢氧化环己酮,可以得到过氧化环己酮,将所得过氧化环己酮在较高的温度下,以ZSM-5分子筛作为催化剂进行催化转化,转化产物通过IR(红外光谱)和GPC(凝胶色谱)表征后,发现产物为聚6-羟基己酸。由于过氧化环己酮的性质不稳定,所以在将其转化为聚6-羟基己酸的过程中,需要加入一定量的溶剂丙酸乙酯来提高其安全性。实验研究了反应温度、催化剂用量,以及反应体系中pH值对转化效果的影响。反应最佳条件:反应温度85℃,催化剂质量占总质量的1.7%,pH值为10,在该条件下过氧化环己酮的转化率最高,转化率为99.2%。  相似文献   

13.
以三乙胺为模板剂,拟薄水铝石为铝源,磷酸为磷源,在55℃恒温水热合成过程中加入硝酸铬,制备出CrAPO4-5分子筛,通过粉末X射线衍射(XRD)、红外光谱(IR)、氨程序升温脱附(NH3-TPD)、魔角核磁共振(MAS NMR)等手段进行了表征,发现所合成的分子筛具有良好的晶体结构,且证明了Cr原子进入分子筛骨架。以CrAPO4-5分子筛为催化剂,以空气为氧源,考察了反应温度、时间、引发剂等因素对环己烷选择性氧化的影响。结果表明,在环己酮为引发剂情况下,反应压力为1.6 MPa,温度为160℃,反应6 h后,环己烷转化率可达20.6%,醇酮总选择性为95.7%。说明CrAPO4-5分子筛具有良好选择性和活性,是一种温和的氧化催化剂。  相似文献   

14.
以磷钨酸为催化剂,过氧化尿素为氧化剂,甲醇作为溶剂,对苯乙烯进行环氧化反应。结果表明,磷钨酸的催化活性较高,苯乙烯的转化率可达93.2%,环氧苯乙烷的产率达到81.2%(基于底物),环氧苯乙烷的选择性达到87.2%以上。重点考察了不同的反应时间和不同催化剂的用量等因素对苯乙烯催化环氧化反应的影响,结果发现,当过氧化尿素(CO(NH_2)_2·H_2O_2)、苯乙烯和磷钨酸的摩尔比为511.8:255.9:1时,环氧苯乙烷产率最高。同时,考察了结晶四氯化锡对反应的影响,结果发现向反应中加入四氯化锡能提高环氧苯乙烷的选择性。  相似文献   

15.
以三乙胺为模板剂,拟薄水铝石为铝源,磷酸为磷源,在55℃恒温水热合成过程中加入硝酸铬,制备出CrAPO4-5分子筛,通过粉末X射线衍射(XRD)、红外光谱(IR)、氨程序升温脱附(NH3-TPD)、魔角核磁共振(MAS NMR)等手段进行了表征,发现所合成的分子筛具有良好的晶体结构,且证明了Cr原子进入分子筛骨架.以CrAPO4-5分子筛为催化剂,以空气为氧源,考察了反应温度、时间、引发剂等因素对环己烷选择性氧化的影响.结果表明,在环己酮为引发剂情况下,反应压力为1.6MPa,温度为160℃,反应6 h后,环己烷转化率可达20.6%,醇酮总选择性为95.7%.说明CrAPO4-5分子筛具有良好选择性和活性,是一种温和的氧化催化剂.  相似文献   

16.
考察了Pd/γ-Al2O3及Pd/Al-CLM两种催化剂的苯和均三甲苯加氢饱和性能。结果两种催化剂的苯加氢饱和性能相当,苯转化率均在99%以上,饱和产物选择性分别为81.37%和77.73%;两种催化剂的均三甲苯加氢饱和性能差别较大,Pd/Al-CLM催化剂的均三甲苯转化率为100%,Pd/γ-Al2O3催化剂的均三甲苯转化率仅为6.10%,饱和产物的选择性均在77%以上。考察稀释后两种催化剂的均三甲苯加氢饱和性能,结果它们的饱和产物选择性均在78%左右,用Al-CLM稀释Pd/γ-Al2O3后催化剂的均三甲苯转化率为34.76%,用γ-Al2O3稀释Pd/γ-Al2O3后催化剂的均三甲苯转化率仅为2.10%。结果表明,Pd/Al-CLM催化剂中存在氢溢流现象,而且该溢流氢参与均三甲苯加氢饱和反应。  相似文献   

17.
采用沉积沉淀法制备出Au/TiO_2-SiO_2催化剂,使用X射线衍射(XRD)和透射电子显微镜(TEM)对其进行表征,进一步考察N-羟基邻苯二甲酰亚胺(NHPI)和Au/TiO_2-SiO_2作为催化剂对环己烷氧化性能的影响。结果表明,NHPI与Au/TiO_2-SiO_2质量比为1∶1,在150℃,氧气压力1.5 MPa下反应3 h,环己烷的转化率高到38.0%,酮醇选择性为79.4%。  相似文献   

18.
Hβ沸石具有酸性和结构选择性 ,载铂后具有双功能催化作用 ,但裂解较严重 ,调节沸石的酸强度可改变其催化性能。用第ⅡA族元素离子Mg2 + 、Ca2 + 、Sr2 + 和Ba2 + 改性Pt/Hβ得Pt/Mgβ、Pt/Caβ、Pt/Srβ和Pt/Baβ。用脉冲微反考察了它们对正己烷、苯和环己烷的催化性能 ,其中Pt/Baβ的催化活性最高 ,在 30 0℃时对正己烷的转化率为 5 5 % ,己烷异构体的选择性为 95 .6 4% ;对苯的转化率为 49.83% ,环己烷的选择性为 6 7.76 %。在 40 0℃时 ,对环己烷的转化率为 1 0 0 % ,苯的选择性为 80 .48%。第ⅡA族元素中 ,极化能力较强的Ba2 + 离子能适当调节 β沸石的酸强度 ,并协同Pt加氢、脱氢和异构化反应。  相似文献   

19.
以γ-Al_2O_3为载体,制备了Ni-La/Al_2O_3双金属选择性加氢催化剂,并用于催化裂化轻汽油的选择性加氢反应。考察了工艺条件对选择性加氢反应的影响。结果表明,二烯烃转化率和单烯选择性随着反应温度的升高而增加,但超过75℃二烯烃转化率已无明显增加,且单烯选择性下降;随着反应压力的升高,二烯转化率提高,但单烯损失较大;二烯烃转化率和单烯选择性随着空速的提高分别呈现下降和上升的趋势;氢气量应该严格控制,否则不仅造成浪费,还会使单烯损失增大。最佳的反应条件:温度75℃、压力1.0MPa、空速10h~(-1)、氢油比为8。在该条件下,催化裂化轻汽油中二烯烃转化率可达到97.8%,单烯烃损失小于2%。表明该催化剂具有良好的加氢活性和选择性,有很好的研究开发前景。  相似文献   

20.
利用小型提升管催化裂化装置考察了提高原料掺炼量对催化裂化行为及产品主要性能的影响。结果表明,提高掺渣量,原料密度、粘度增大,难以裂化的重组分含量增多,使得原料油雾化、汽化的效果变差,裂化产物中焦炭、氢气产率增加,催化剂再生烧焦的难度增大;原料油中重金属及硫、氮含量升高,导致反应的转化率及选择性下降,轻油产率减少;裂化产物中汽、柴油的硫、氮含量有所升高,酸度增大,产品精制的苛刻度增加。增大剂油比,提高反应温度可以改善原料油的雾化、汽化效果,对改善裂化产物的产品分布有利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号